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THE GEOMETRY OF WEAK RADON-NIKODYM SETS

IN DUAL BANACH SPACES1

LAWRENCE H. RIDDLE

Abstract. Geometric characterizations in terms of trees, extreme points and denta-

bility are presented for weak*-compact absolutely convex sets that have the Radon-

Nikodym property for the Pettis integral.

I. Introduction. One useful method for investigating a property of Banach spaces is

to localize the property by defining and studying it for an individual subset. Thus

one encounters, for example, Dunford-Pettis sets, Radon-Nikodym sets, and recently

StegalPs GSP sets, which are in some sense a localization of the Asplund property.

In this paper we shall present several geometric characterizations of weak*-compact

absolutely convex sets that have the Radon-Nikodym property for the Pettis

integral. For operator theorists, such sets are characterized by the property that an

operator on Lx(p) mapping the unit ball of Lx(p) into the set must be a Dunford-

Pettis operator, i.e., must take weakly convergent sequences into norm convergent

sequences. The characterizations presented here involve a new type of tree structure,

a condition on the extreme points, and a dentability criterion due to Elias and

Paulette Saab [11], and are based on a factorization lemma in Riddle, Saab, and Uhl

[8].
Let us first fix some terminology. Throughout this paper X and Y will denote real

Banach spaces. Let (fi, 2, p) be a finite measure space. A function/(•) from ñ into

the Banach space X is said to be Pettis integrable if the scalar function x*f(-) is

integrable for each x* in the dual space X* and if for each measurable set E in 2

there is an element xE of X that satisfies

x*(xE) = fx*fdp

for every x* in X*. In this case we write xE — Tettis-fEfdp.

A subset K of X is called a weak Radon-Nikodym set if for any finite measure

space (fí, 2, ju) and any vector measure F: 2 -» X for which F(E) E p(E)K for

every E in 2, there exists a Pettis integrable function f:Q^>K such that F(E) =

Vettis-jEf dp for every £ in 2. A Banach space X is said to have the weak

Radon-Nikodym property if its closed unit ball, Bx, is a weak Radon-Nikodym set.
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Recall that a set is weakly precompact if every sequence in the set has a weakly

Cauchy subsequence. In his fundamental paper [10], Rosenthal proved that a

bounded subset of a real Banach space X is weakly precompact if and only if it

contains no copy of the /,-basis; that is, it is impossible to find a sequence (x„) in X

and a positive 8 such that

|2«**J|>*2kl
for all finitely nonzero sequences (ak) of reals.

The cornerstone for our results will be the following theorem proved in Riddle,

Saab, and Uhl [8].

Theorem 1. Each of the following statements about an operator T: X -» Y implies all

the others:

(a) The set T(BX) is weakly precompact.

(b) The operator Tfactors through a Banach space that contains no copy oflx.

(c) The set T*(BY*) is a weak Radon-Nikodym set.

(d) For any finite measure space (ß, 2, p) and any operator S: Lx(p) -» X* that

maps the unit ball of Lx(p) into T*(BY*), the operator S is a Dunford-Pettis operator.

Any weak*-compact absolutely convex set K in the dual X* of a Banach space X

can be written in the form K = T*(BY,). To see this, just take Y to be the space

C(K) of continuous functions on K and let T: X -* Y be the evaluation operator

defined by Tx(x*) = x*(x). This observation will allow us to use Theorem 1 to

study arbitrary weak*-compact absolutely convex sets.

II. Rademacher trees. A sequence (x„) in a Banach space X is called a tree if

xn — (x2n + x2n+1)/2 for all « = 1,2,_A tree is called a á-Rademacher tree [9] if

there exists a 8 > 0 such that
*

|[x,|>8,       ||x2 — x3||> 2ô,       ||x4 — x5 + x6 — xjs* 45,

and, in general,

2* + l-l

2     (-l)"xn>2k8

n=2*

for all ic = 0,1,2,_Notice that each alternating sum is taken over an entire "row"

of the tree.

Two of the best known trees are both Rademacher trees. Setting xx = X[o,i]>

x2 = 2x[o,i/2]> x3 = 2X[i/2,i]> x4 ~ 4X[o,i/4]> x$ ~ 4X[i/4,i/2]> e*c-> produces a 1-

Rademacher tree in L,[0,1]. Also, letting x, = (1,0,0,...), x2 — (1,1,0,0,...),

x3 = (1, -1,0,0,...), x4 = (1, 1, 1,0,...), x5 = (1,1,-1,0,...), x6 =

(1, — 1,1,0,...), x7 = (1, — 1, — 1,0,...), etc., yields a tree in the sequence space c0

which is easily seen to be a 1-Rademacher tree.

Theorem 2. For an operator T: X -» Y, the set T*(By,) is a weak Radon-Nikodym

set if and only if it does not contain a Rademacher tree.

Consequently, a weak*-compact absolutely convex subset of X* is a weak Radon-

Nii   ^>m set if and only if it does not contain a Rademacher tree.
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Proof. Suppose K= T*(BY.) contains a ô-Rademacher tree (x*). Define the

usual martingale associated with a tree (cf. [2, V. 1.7]), i.e.,

f\  ~ X*X[0.1]' h ~ X2X[0.1/2] + •x3X[l/2.1]'

etc. Define an operator S: Lx[0,1] -» X* by S(g) = lim„ /gf„dX (X is Lebesgue

measure on [0,1]) and observe that if rn is the «th Rademacher function, then

l|s(OII fr„fndX 8.

Since the sequence (r„) is weakly null in L,[0,1], we see that the operator 5 is not

Dunford-Pettis. However, the set K does contain S(BL[0X]) since it contains the

range of f„ for each n. Invoke Theorem 1 to conclude that K = T*(BY.) is not a

weak Radon-Nikodym set.

Conversely, suppose K = T*(BY.) is not a weak Radon-Nikodym set. Invoke

Theorem 1 and Rosenthal's fundamental result [10] on weakly precompact sets to

find a sequence (Txn) in T(BX) that is equivalent to the usual /,-basis (en). Let Y0 be

the closed subspace determined by the sequence (Txn). Then S(Txn) = en defines an

isomorphism from Y0 onto /,. Let (e*) be the c0-tree described earlier, but now

considered as a tree in the sequence space lx. Lety* = \\S\\~xS*(e*). Then (y*) is a

tree in BY.. By the lifting property of bounded trees in dual spaces (this follows

easily from a compactness argument, cf. [6]) there exists a tree (z*) in BY. such that

z*(y) = y*(y) for all.y in Y0.

We claim that (T*z*) is a Rademacher tree in K. To see this, first note that for

each k = 1,2,3,..., letting i — k + 1, the element ei of the usual /,-basis satisfies

e*(e¡) = (—1)" for n = 2k,...,2k+x — 1. Taking each of the following sums from

n = 2* to n = 2k+ ' - 1, we obtain

||2(-inx1H2(-i)":r%*(*,)|

= \\sfl\2(-iyet(e,)\

=iisif'|2(-ir(-ir|
= 2*11X0-1

Hence (T*z*) is a || SII ~'-Rademacher tree in K.

The second statement follows from the first statement and the observation

following Theorem 1. This completes the proof.

A quick glance at the beginning of the above proof shows that any Banach space

containing a bounded Rademacher tree fails to have the weak Radon-Nikodym

property. Since the isomorphic copy of a Rademacher tree is again a Rademacher

tree, this observation immediately shows that neither c0 nor L,[0,1] can be em-

bedded in a Banach space having the weak Radon-Nikodym property, a fact

previously proved by Janicka [5] and by Ghoussoub and Saab [3].

III. Extreme points. In 1976, Haydon [4] showed that spaces not containing /,

have fairly strong extremal properties in their duals. Since such duals also have the

weak Radon-Nikodym property [5], the next theorem might be considered as a

localization of Haydon's result.



436 L. H. RIDDLE

Theorem 3. Each of the following statements about an operator T: X -» Y implies all

the others:

(a) The set T*(BY») is a weak Radon-Nikodym set.

(b) Every weak*-compact convex subset of T*(BY.) is the norm-closed convex hull of

its extreme points.

(c) For every weak*-compact subset W of T*(BY»), the weak*-closed convex hull of

W coincides with the norm-closed convex hull of W.

Consequently, a weak*-compact absolutely convex subset K of X* is a weak

Radon-Nikodym set if and only if every weak*-compact convex subset of K is the

norm-closed convex hull of its extreme points.

Proof, (a) => (b). Let K = T*(BY.) and let C be a weak*-compact convex subset

of K. Suppose C ¥= norm-cl conv(Ext C). By the proof of [4, Proposition 3.1], there

exist a nonempty subset S of C, a sequence (x„) in Bx, and a constant ô > 0 such

that

62 kl^supf^^UOl-.iGS)
for all finitely nonzero sequences (a¡) of reals. Fix s in S and observe that s = T*y*

for somej* in BY,. Then

\2ais(xi)\ = \2aiT*y*(x,)\<¡'2lat(Txi)\\.

Accordingly,

s2 kl^lSa.í7-*«)!»
i.e., the sequence (Tx„) is a copy of the /,-basis. Consequently T(BX) is not weakly

precompact. Appeal to Theorem 1 to see that T*(BY.) is not a weak Radon-

Nikodym set.

(b) => (c). This follows immediately from the observations that if W is a weak*-

compact subset of K, then weak*-cl conv(W) E K and Ext(weak*-cl conv(W)) E W

[1, V.l.3].

(c) => (a). Suppose T*(BY.) is not a weak Radon-Nikodym set. Use Theorem 1

and Rosenthal's theorem to find a copy (Txn) of the usual /rbasis in T(BX). Let A^

denote the closed subspace determined by the sequence (x„) and let i: X0 -> A'be the

natural inclusion map. In addition, let T0 denote the restriction of T to the subspace

X0. Note that since there is a 5 > 0 satisfying

«12«i?J|< ô2 kl <|| W4Hlro(2«i*,)||
for all finitely nonzero sequences (a,) of reals, the operator T0 has a bounded inverse

on its (closed) range YQ. Therefore its adjoint 70*: yj ¿+ X¡¡ also has a bounded

inverse.

Let V: Y0 -» C[0,1] be a quotient map on the separable space Y0, and let K0

denote the image of the set of unit point masses on [0,1] under the action of the

adjoint operator V*. Then K0 is a weak*-compact subset of YJ which has distinct

weak*-closed and norm-closed convex hulls (see [4]). Since weak*-cl con\(KQ) is

weak*-compact and T0* is weak*-to-weak* continuous, we have

7^(weak*-clconv(AT0)) = weak*-clconv(7o*Ä:0).
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In addition, since T0* has a norm continuous inverse,

:T0*(norm-clconv(.fY0)) = norm-cl conv(7o*AT0).

Therefore norm-cl conv(T£K0) 7e weak*-cl conv(T£K0).

Letf: Y0-> Y denote the natural inclusion map. Pick a weak*-compact subset M

of Y* such that j*M = K0. Let W = T*M and observe that i*W = T£K0. Then

i'*(weak*-clconv(lF)) = weak*-clconv(r0*Ä"0)

and

/♦(norm-clconviW)) E norm-cl conv(7^^0),

so consequently weak*-cl conviW7) ¥= norm-cl conv(W). A suitable scalar multiple

of IF produces a weak*-compact subset of T*(BY.) with distinct weak*-closed and

norm-closed convex hulls, as required.

This completes the proof.

TV. Dentability. In [11] Saab and Saab introduce the following dentability crite-

rion.

Definition. A bounded subset A of X* is said to be weak*-scalarly dentable if for

every e > 0 and every x** in X** there exists a weak*-open slice S = {x* G A:

x*(x) > sup ,ey4 y*(x) — a) for some x in X and a > 0 such that the oscillation of

x** on 5 satisfies

sup{|x**(x*) - x**(y*)\:x*,y* E S] < e.

They then proceed to show that every nonempty bounded subset of X* is

weak*-scalarly dentable if and only if for every weak*-compact subset A and every

x** in X**, the restriction of x** to A equipped with the weak*-topology has a point

of continuity. A close examination of their proof, though, reveals that it works inside

any weak*-compact convex set; i.e. for a weak*-compact convex set K, every

nonempty subset of K is weak*-scalarly dentable if and only if for every weak*-com-

pact subset M of K and every x** in X**, the restriction of x** to (M, weak*) has a

point of continuity. In Riddle, Saab, and Uhl [8], however, this latter condition is

shown to characterize the weak Radon-Nikodym property for K provided that K is

absolutely convex.

With the help of a standard separation argument, it is easily seen that a nonempty

bounded set A is weak*-scalarly dentable if and only if for every e > 0 and every

x** in X** there exists x* in A such that

x* g weak*-clconv(^4\{y* G A: |x**(x*) — x**(y*)\ < e}).

Observe that what is being removed from the set A is a weak neighborhood of the

point x*.

It is perhaps worth remarking here what happens if various parts of this dentabil-

ity condition are changed. If, for example, one takes the weak closure (or equiva-

lent^ the norm closure), then the Bishop-Phelps theorem ensures that every non-

empty subset of X* satisfies the new condition (as was pointed out to us by Elias

Saab). This immediately shows that weakly compact sets are weak*-scalarly denta-

ble, a result that is not surprising since such sets are actually dentable. Likewise, if
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one requires the conditions to hold only for every x in X rather than all elements in

X**, then again all nonempty subsets have the corresponding property. Finally, if

one requires that the norm diameter of the weak*-open slice be less than e, then the

property is called weak*-dentability and every nonempty bounded set has the

property if and only if X* has the Radon-Nikodym property (see Namioka and

Phelps [7]).

The last theorem summarizes the discussion of this and the previous sections.

Theorem 4. Each of the following statements about a weak*-compact absolutely

convex subset Kofa conjugate Banach space X* implies all the others:

(a) The set K is a weak Radon-Nikodym set.

(b) The set K does not contain a Rademacher tree.

(c) Every weak*-compact convex subset of K is the norm-closed convex hull of its

extreme points.

(d) Every nonempty subset of K is weak*-scalarly dentable.
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