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ON THE INTEGRAL MEANS OF DERIVATIVES

OF THE ATOMIC FUNCTION

MIODRAG MATELJEVlC AND MIROSLAV PAVLOVlC

Abstract. In this note we give upper and lower estimates on integral means of the

atomic function and its derivatives over a circle of radius r as r approaches 1. From

this we derive some known and new results.

1. Introduction. In 1971, M. R. Cullen [5] conjectured that ¿>' g Bx/2 for any

singular inner function <j>. A counterexample was found by H. A. Allen and C. L.

Belna [3]; in fact, the atomic functions S(z) = exp[(z + \)/(z — 1)] satisfies S' E Bp

for allp < 2/3 and 5" <2 P2/3. P. R. Ahern and D. N. Clark [2] generalized this and

showed that <b' g B2/3 provided that <p has a singular factor. Further references are

[1 and 2].

Here we give good estimates of integral means of derivatives of S(z) (our main

result), and use these to find analogues of the above results for the spaces Dp and Gp

(to be defined below).

2. Definitions. Let / be an analytic function on the unit disc. We shall use the

convenient notation,

Mp(r,f)=±£'\f(re»)\'dO,       P > 0,

A(r,f) = f[     \f'(z)\2dxdy,       p>0.

The classes D", A*' and  Gp are defined by f E Dp (p>0) if and only if

/o1 A(r, f)p/2 dr < +cc, f E Ai-p (q > 0,0 < p < 1) if and only if

/"' f2n]f(re'e) \" (1 - r2)Vp-2rdrd6 < go,
■'o Jo

fEGp(p>0)ifand only if j¿(j2" ]f'(re'e) ] d6)p dr < oo.

The classes Bp (0 < p < 1) is defined by Bp = Ax'p. For some properties of Dp

spaces see [6, 7, 9 and 10], for Gp see [10 and 11].
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3. The results. The following theorem will be proven in §4.

Theorem. Let p > 0 and n be a positive natural number. Then there is positive

constant K which depends only on p and n such that

(1) ^(r)<Mp(r,S^)<k¡p(r),       r - 1_,

where ty(r) denotes (1 - r)x/2-"p if p > 1/2«, | log(l - r)\ if p = 1/2« and 1 if

p < 1/2«.

An immediate corollary is

Proposition 1. Let « EN. Then

(i) S(n) E Dp if and only if p < 4/(4« + 1),

(ii) S("+1) G A"-» if and only if p < 2/(2q(n + 1) + 1),

(iii) S{n) E G" if and only if p < 2/(2« + 1).

If we set « = 1 in part (i) and « = 0 in (ii) of this proposition we obtain Theorems

5 and 3 in [8]. In particular, we have S" £ P2/3 [4].

Proposition 1 implies S" G Dp if and only if p < 4/5 and S' E Gp if and only if

p < 2/3. The following Propositions 2 and 3 generalize this fact.

Proposition 2. 7/<p is an inner function with a singular factor then (i) <¡>' G Z>4/5

and (ii) <f>' £ C72/3.

Proof. Let us consider (i). We have proved [9] / G Dp if and only if

00    / ,p/1

o v*e/„ '

where/(z) = 2 akzk and /„ = {k: 2" < * < 2"+1, * G JV}. Hence, D" C yl2^/2 for

0 <p *£ 2 and, in particular, Z)4/5 C y42'2/5. Now (i) follows from Ahern's result [1]

that <p' £ A2,2/5 if ff> is an inner function with a singular factor.

Part (ii) follows from the relation G" C Bp, 0 <p < 1 [10], and Ahern-Clark's

result that ¿«' £ P>2/3 if d> is an inner function with a singular factor.

We need the following definition [2]: a compact subset E of [0,2m\ is of type ß

(0 < ß < 1) if there is a constant c such that \E,\< ceß, where £e = [6: dist(ö, £)

< e}. It is clear that E is finite if and only if E is type 1.

Proposition 3. Suppose o is a singular measure whose support is a set of type ß

(ß > 0). Let <p be the corresponding singular inner function. Then

(i) <f>' G Dpfor allp < 4/(6 - ß),

(ü) $' G Gp for allp < 2/(4 - ß).

Proof. Let us first consider (i). Ahern [1, Lemmas 4.1 and 5.1] has proved

(2) <(>'EBp   if and only if    fXM2(r,<¡>')(l - rf/p~ldr< oe       (¿</»< l).
•'o

Hence

(3) <t>'EBp^M2(r,^') = 0(l-r)-l/p,       r^\_{\<p<\).

Combining (2) and (3) with Theorem 4 of [2], we get (i).
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For the proof of (ii) it is enough to note Mx(r, <f>') < c(l — r)q~x for all q > ß/2

(cf. [2, Theorem 4]).

4. The proof of the Theorem. The letter "C" in the following should be read "an

arbitrary constant, depending only on p and « ".

Let p > 0 and « a positive natural number. Induction gives

Mû.
(z - if"

where Pn is a polynomial and P„(l) ¥= 0. Hence, we obtain

(4)    |S<">(re")| =-|i>n(re'9)l-expf--\^-)
(l+r2-2rcos0)"        I    1 + r2 - 2rcos6 J

(0<r< l,0<e<2ir).

From (4) and the inequality e'x > 1 — x it follows that

|S(">(re")|>-r\P*(K' ^       ir-cosfl)        (r>cosO).
2"(l-/-cos0)

Since P„(l) ¥• 0, there are positive constants C and r0, 0 < r0 < 1, so that | Pn(re,e) ]

3= C for all (r, 0) satisfying 0 < 6 < tt/2 and r02 < cos 0 =s r2 < 1. Hence,

| S(n)(«?'*)|> C-r~COS<>n+1        (O < 0 < V2, '"o2 < cosö < r2 < l).
(1 — reosÖ)"

From this inequahty, we obtain

MB(r, S<">) > C /",2     (r~"^+   (1 - u)'X/1 du
pK ' l¿   (l-ru)np+pK '

^Cfr\l-ru)-np-i/2du>^(r),        r>r0.
r0

This estabhshes the left-hand inequality in (1).

For the rest, we note first that, by (4),

M(r, S<»>) ̂C+C r/2(\ +r2- 2rcos ^"""expi--P^ ~ ^-) d8,
Jo \    1 + r2 — 2rcos8 )

i.e.

(5) Mp(r,S^)^C+CIx(r) + CI2(r),p

where

Ix(r)=fg(r,t)p(l-t2)-l/2dt,

I2(r)=fg(r,t)p(\-t2)-l/2dt

and

g(r, t) = (1 + r2 - 2rf)-"exp(-       *   /\    ).
\    1 + r   — 2rt I
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Let 0 < t < r. Then 1 + r2 - 2rt > 1 - rt and 1 - t2 > 1 - rt. Hence,

(6) Ix(r) < f(\ - rt)-"p-l/2dt < C*(r),       r - 1_.
•'o

To estimate I2(r) we use the equality (derived by direct calculation)

(7) max g(r,t) = n"(\-r2yne-n        f^|<r<l).
r*it<,\ \ n + 1 /

From (7) it follows that

(8) I2(r)*iC(\-r)-np f\\-t)-X/2dt^C(\-r)-np+X/2,        r-*\_.

Now the right-hand side of (1) follows immediately from (5), (6) and (8).
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