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TOTALLY REAL MINIMAL SUBMANIFOLDS
IN A COMPLEX PROJECTIVE SPACE

NORIO EJIRI

ABSTRACT. We give a pinching theorem with respect to the scalar curvatures of
4-dimensional conformally flat totally real minimal submanifolds in a 4-dimensional
complex projective space.

1. Introduction. Among all submanifolds of an almost Hermitian manifold, there
are two typical classes: one is the class of holomorphic submanifolds and the other is
the class of totally real submanifolds. There have been many results in the theory of
holomorphic submanifolds; on the other hand, there have been only a few results in
the theory of totally real submanifolds.

H. Naitoh [2], M. Takeuchi [3] classified submanifolds in a real and complex space
form with parallel second fundamental form.

Among such examples, there exist three n-dimensional conformally flat totally real
minimal submanifolds in a complex projective space P, of constant holomorphic
sectional curvature 4:

(i) a totally geodesic submanifold,

(11) a flat torus,

(iii) a Riemannian product of S'(sin acos a) and S”~!(sin a), where S"(r) is an
n-dimensional sphere with radius r and tan a = /n.

The purpose of this paper is to give a characterization of (i1) and (iii) of 4
dimension.

THEOREM. Let M be a 4-dimensional compact orientable conformally flat totally real
minimal submanifold in P,. If M has nonnegative Euler number and the scalar
curvature p of M is between 0 and 15/2, then p is 0 or 15/2 and M is (ii) (p = 0),
(iii) (p = 15/2) or its covering spaces.

REMARK. If n = 4, B. Y. Chen and K. Ogiue’s result [1] implies that every compact

totally real minimal submanifold in P, with p = 64 /7 is totally geodesic (p = 12).
The author is grateful to Professor K. Ogiue for his useful criticism.

2. Proof of Theorem. We use the same notations and terminologies as in [1]. It was
proved in [1] that the second fundamental form of the immersion satisfies
2 2
(1) fAllel?>=1Iv'ell?+ Jtr(A.d;. — A A4.) — D(trd.4,.)" + 5Sloll.
ij ij
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Since
2
2 i* i i %

Etr(Ai‘Aj" - Aj‘Ai‘) = - 2 (E (hlkmh{m - hfcmhllm)) ’

i,j i,j,k,d " m
this, together with the equation of Gauss, implies

2
() 2tr( Ay — A dy)” = RN + 4p — 24,
L)
By the same argument as above, we have
3) ) (tr 4,.4;.)" = 1IS1I2 — 6p + 36.
l‘j

Combining (1) with (2) and (3), we obtain

(4) $Allell2=1Iw'oll> = IRIZ* = ISII* + Sp.
From the assumption that M is conformally flat, we obtain
) IRIZ =281+ 4p?* =

which, together with (4), asserts
Allell?=lIv'oll* = 3ISII* + 1p* + 5p.
Taking the integrals of the both sides of it and using Green’s theorem, we have
ra ]2 — 2 _ 1,2
(6) J ool ey = [ (3IS1? = 40* = S0} « by

On the other hand, by the Gauss-Bonnet theorem, the Euler number x(M) of M
is given by

1
x(M) = = [ (IRI? = 4ISI* + 7} =1y,
It follows from (5) that
1 2
7 M) = {— 2—2nsn2}*1 .
@ x(M) 32772/M 3 M

Combining (6) with (7), we get an integral formula:

2 15
2 ’ 2 —_
487 x(M)+j;”||Vo|| *IM—f 3p{ 2}*1M.

Theorem follows from the integral formula and results in [2, 3].
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