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MORE ON M. E. RUDIN'S DOWKER SPACE

KLAAS PIETER HART

Abstract. It is shown that M. E. Rudin's Dowker space is finitely-fully normal and

orthocompact, thus answering questions of Mansfield and Scott.

0. Introduction. In [Ma] Mansfield defined the notions of K-full normality and

finite-full normality. One of the questions he raised was, whether there exists a

finitely-fully normal space which is not an co0-fully normal space.

In [Sc] Scott asked whether M. E. Rudin's Dowker space [Ru] is orthocompact.

We answer both questions simultaneously by showing that the above-mentioned

space is both finitely-fully normal and orthocompact. Mansfield's question is hereby

answered since in [Ma] he showed that almost co0-fully normal spaces are countably

paracompact. Almost K-full normality will not be defined here; it suffices to know

that it is weaker than K-full normality.

1. Definitions and preliminaries.

1.0 K-full normality and orthocompactness. Let y be a topological space, %. an open

cover of Y and k > 2 a cardinal. An open cover Tis said to be a K-star (finite-star)

refinement of % if for all T' Ç Twith | T | < k (T' finite) and D'Y' ¥= 0 there is a

U E <& with WV' CU, and Tis a ß-refinement of % if Prefines % and D T is

open for all "V Ç T. (Recent practice is to call ^-refinements interior-preserving

open refinements.)

Y is called K-fully (finitely-fully) normal [Ma] if every open cover of Y has a K-star

(finite-star) refinement. Y is called orthocompact [Se] if every open cover of Y has a

(2-refinement.

1.1 M. E. Rudin's Dowker space. Let F= II^=1(co„ + 1) endowed with the box

topology. Furthermore let X' = {/ G F: Vn G N cf(/(«)) > co0} and X = {/ G A":

3/ G N: Vn G N cf(/(«)) < co,}. Then Zis M. E. Rudin's Dowker space [Ru].

We give an alternative description of the canonical base for A" (and A"). For /,

g G F we say

/<gif/(/î)<g(n)forall«,

/<gif/(n)<g(«)forall«.

For/, g G F with/< g we let

Ufg={hEX':f<h<g)
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and

Uf,g = u},g n x.

Then

{Upg:f,gEF,f<g}

is a base for the topology of X^'\ Notice that the basic open sets are convex in the

partial order < on X, a fact we will use in the proof of Theorem 2.2.

2. The main result. In this section we prove using the results from [Ru] and [Ha]

that the Dowker space X is finitely-fully normal and orthocompact. First we

formulate a lemma, the proof of which can be found (implicitly) in the proof in [Ru]

that X is collectionwise normal.

2.0 Lemma, a. Every open cover of X' has a disjoint refinement consisting of basic

open sets.

b. If A, B C X are closed and disjoint then

Clx,A n C\X,B = 0.    D

The next result is from [Ha].

2.1 Lemma. For all n E N: (A")" is homeomorphic to A", and the homeomorphism

can be chosen to map X" onto X.

Now we are ready to prove the main result.

2.2 Theorem. The space X is both 2-fully normal and orthocompact.

Proof. Let % be a basic open cover of X. Put U = U {0 X 0 X 0: 0 G %}; U is a

neighborhood of {(x, x, x): x E X} in X3. Using 2.1 and 2.0b find a neighborhood

IP of {(x, x,x):xE X'} in (A")3 such that IP n A3 = U.

For x E X' \ X, choose Ux 3 x open such that U3 Q LP.

By 2.0a let 0' be a disjoint basic open refinement of the open cover

{X^C\x,(X^0)}aeBliU {Ux}xex,xX.

Let 6= {0' n A:O'G0'}.

Let 0 G 0 and {jc, y, z} Ç 0.

Then {x, y, z} C some V E % or {x, y, z} C some U , but then (x, y, z) E U3

D X3 C U, so (x, y, z)E V3 for some F G % in any case. This implies that

[x, y, z} C V.

For each 0 G 0 define %Q as follows: 0 = Up for some p,q E F, so put

% ~ iup,x- x E 0}. Let <¥ = U {<¥0: 0 G 0}. Then <¥ is both a 2-star and a

ß-refinement of %.

First, assume U x D U ¥^ 0 for some U and U in 6ui. Then x and y axe

elements of the same 0 G 0 and hence p = q. Define p' by p'(n) = p(n) + co,

(n E N); thenp <p' < x,y andp' E X, sop' E 0.

Pick u E % such that {p',x, y) C U. Since U is basic (and hence < -convex) and

Up.z = {i: p' < ? < z} for z = x, y, it follows that Upx U Upy C U. So <¥ is a 2-star

refinement of %. Second, let %' C <¥ with  Pi <¥' ^ 0.Then all WE%' are
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contained in the same 0 G 0, so 6HS' = {U '. x E A} for some subset A of 0, where

0 = Upq. Define / by f(n) = xnin{x(n): x E A}. Then H <¥' = Upf is open. So %

is a ß-refinement of %.    D

It now follows easily that X is finitely-fully normal:

2.3 Corollary. A is finitely-fully normal.

Proof. Let <$L be an open cover of X. Let T, be a 2-star refinement of %, and

(inductively) let cVn+1 be a 2-star refinement of ^ (« G N). Since A is a P-space

(Gs's axe open) we can take the common refinement of all % ; call it T. Let TçT

be finite with (1T^0. Pick n E N such that 2" >| T | . Since <V refines % and

since \ is a 2"-star refinement of %, it follows that U T' is contained in some

(/el   D
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