MORE ON M. E. RUDIN'S DOWKER SPACE

KLAAS PIETER HART

ABSTRACT. It is shown that M. E. Rudin's Dowker space is finitely-fully normal and orthocompact, thus answering questions of Mansfield and Scott.

0. Introduction. In [Ma] Mansfield defined the notions of κ -full normality and finite-full normality. One of the questions he raised was, whether there exists a finitely-fully normal space which is not an ω_0 -fully normal space.

In [Sc] Scott asked whether M. E. Rudin's Dowker space [Ru] is orthocompact. We answer both questions simultaneously by showing that the above-mentioned space is both finitely-fully normal and orthocompact. Mansfield's question is hereby answered since in [Ma] he showed that almost ω_0 -fully normal spaces are countably paracompact. Almost κ -full normality will not be defined here; it suffices to know that it is weaker than κ -full normality.

1. Definitions and preliminaries.

1.0 κ -full normality and orthocompactness. Let Y be a topological space, $\mathfrak A$ an open cover of Y and $\kappa \ge 2$ a cardinal. An open cover $\mathfrak V$ is said to be a κ -star (finite-star) refinement of $\mathfrak A$ if for all $\mathfrak V' \subseteq \mathfrak V$ with $|\mathfrak V'| \le \kappa$ ($\mathfrak V'$ finite) and $|\mathfrak V'| \ne \emptyset$ there is a $U \in \mathfrak A$ with $|\mathfrak V'| \subseteq U$, and $\mathfrak V$ is a Q-refinement of $\mathfrak A$ if $\mathfrak V$ refines $\mathfrak A$ and $|\mathfrak V'|$ is open for all $|\mathfrak V'| \subseteq \mathfrak V$. (Recent practice is to call Q-refinements interior-preserving open refinements.)

Y is called κ -fully (finitely-fully) normal [Ma] if every open cover of Y has a κ -star (finite-star) refinement. Y is called orthocompact [Sc] if every open cover of Y has a O-refinement.

1.1 M. E. Rudin's Dowker space. Let $F = \prod_{n=1}^{\infty} (\omega_n + 1)$ endowed with the box topology. Furthermore let $X' = \{ f \in F : \forall n \in \mathbb{N} \text{ cf}(f(n)) > \omega_0 \}$ and $X = \{ f \in X' : \exists i \in \mathbb{N} : \forall n \in \mathbb{N} \text{ cf}(f(n)) < \omega_i \}$. Then X is M. E. Rudin's Dowker space [Ru].

We give an alternative description of the canonical base for X' (and X). For f, $g \in F$ we say

$$f < g \text{ if } f(n) < g(n) \text{ for all } n,$$

 $f \le g \text{ if } f(n) \le g(n) \text{ for all } n.$

For $f, g \in F$ with f < g we let

$$U'_{f,g} = \{ h \in X' : f < h \le g \}$$

Received by the editors February 9, 1982.

1980 Mathematics Subject Classification. Primary 54D20, 54G20.

Key words and phrases. κ-fully normal, finitely-fully normal, orthocompact.

and

$$U_{f,g} = U'_{f,g} \cap X$$
.

Then

$$\left\{ U_{f,g}^{(')} : f, g \in F, f < g \right\}$$

is a base for the topology of $X^{(')}$. Notice that the basic open sets are convex in the partial order \leq on X, a fact we will use in the proof of Theorem 2.2.

- 2. The main result. In this section we prove using the results from [Ru] and [Ha] that the Dowker space X is finitely-fully normal and orthocompact. First we formulate a lemma, the proof of which can be found (implicitly) in the proof in [Ru] that X is collectionwise normal.
- 2.0 LEMMA. a. Every open cover of X' has a disjoint refinement consisting of basic open sets.
 - b. If $A, B \subseteq X$ are closed and disjoint then

$$\operatorname{Cl}_{Y'}A \cap \operatorname{Cl}_{Y'}B = \emptyset$$
. \square

The next result is from [Ha].

2.1 LEMMA. For all $n \in \mathbb{N}$: $(X')^n$ is homeomorphic to X', and the homeomorphism can be chosen to map X^n onto X.

Now we are ready to prove the main result.

2.2 THEOREM. The space X is both 2-fully normal and orthocompact.

PROOF. Let \mathfrak{A} be a basic open cover of X. Put $U = \bigcup \{0 \times 0 \times 0 : 0 \in \mathfrak{A}\}$; U is a neighborhood of $\{\langle x, x, x \rangle : x \in X\}$ in X^3 . Using 2.1 and 2.0b find a neighborhood U' of $\{\langle x, x, x \rangle : x \in X'\}$ in $(X')^3$ such that $U' \cap X^3 = U$.

For $x \in X' \setminus X$, choose $U_x \ni x$ open such that $U_x^3 \subseteq U'$.

By 2.0a let θ' be a disjoint basic open refinement of the open cover

$$\{X' \setminus \operatorname{Cl}_{X'}(X \setminus 0)\}_{0 \in \mathfrak{A}} \cup \{U_x\}_{x \in X' \setminus X}.$$

Let $\emptyset = \{0' \cap X: 0' \in \emptyset'\}.$

Let $0 \in \emptyset$ and $\{x, y, z\} \subseteq 0$.

Then $\{x, y, z\} \subseteq \text{some } V \in \mathbb{Q} \text{ or } \{x, y, z\} \subseteq \text{some } U_p$, but then $\langle x, y, z \rangle \in U_p^3 \cap X^3 \subseteq U$, so $\langle x, y, z \rangle \in V^3$ for some $V \in \mathbb{Q}$ in any case. This implies that $\{x, y, z\} \subseteq V$.

For each $0 \in \mathbb{O}$ define \mathbb{W}_0 as follows: $0 = U_{p,q}$ for some $p, q \in F$, so put $\mathbb{W}_0 = \{U_{p,x}: x \in 0\}$. Let $\mathbb{W} = \bigcup \{\mathbb{W}_0: 0 \in \emptyset\}$. Then \mathbb{W} is both a 2-star and a Q-refinement of \mathbb{Q} .

First, assume $U_{p,x} \cap U_{q,y} \neq \emptyset$ for some $U_{p,x}$ and $U_{q,y}$ in \mathfrak{V} . Then x and y are elements of the same $0 \in \mathfrak{V}$ and hence p = q. Define p' by $p'(n) = p(n) + \omega_1$ $(n \in \mathbb{N})$; then $p < p' \leq x$, y and $p' \in X$, so $p' \in 0$.

Pick $u \in \mathfrak{A}$ such that $\{p', x, y\} \subseteq U$. Since U is basic (and hence \leq -convex) and $U_{p,z} = \{t: p' \leq t \leq z\}$ for z = x, y, it follows that $U_{p,x} \cup U_{p,y} \subseteq U$. So \mathfrak{A} is a 2-star refinement of \mathfrak{A} . Second, let $\mathfrak{A}' \subseteq \mathfrak{A}$ with $\bigcap \mathfrak{A}' \neq \emptyset$. Then all $W \in \mathfrak{A}'$ are

510 K. P. HART

contained in the same $0 \in \mathcal{O}$, so $\mathfrak{W}' = \{U_{p,x} : x \in A\}$ for some subset A of 0, where $0 = U_{p,q}$. Define f by $f(n) = \min\{x(n) : x \in A\}$. Then $\bigcap \mathfrak{W}' = U_{p,f}$ is open. So \mathfrak{W} is a Q-refinement of \mathfrak{A} . \square

It now follows easily that X is finitely-fully normal:

2.3 COROLLARY. X is finitely-fully normal.

PROOF. Let \mathfrak{A} be an open cover of X. Let \mathfrak{I}_1 be a 2-star refinement of \mathfrak{A} , and (inductively) let \mathfrak{I}_{n+1} be a 2-star refinement of \mathfrak{I}_n ($n \in \mathbb{N}$). Since X is a P-space (G_δ) 's are open) we can take the common refinement of all \mathfrak{I}_n ; call it \mathfrak{I} . Let $\mathfrak{I}' \subseteq \mathfrak{I}$ be finite with $\bigcap \mathfrak{I}' \neq \emptyset$. Pick $n \in \mathbb{N}$ such that $2^n \ge |\mathfrak{I}'|$. Since \mathfrak{I} refines \mathfrak{I}_n and since \mathfrak{I}_n is a 2^n -star refinement of \mathfrak{I}_n , it follows that $\bigcup \mathfrak{I}'$ is contained in some $U \in \mathfrak{I}_n$. \square

REFERENCES

[Ha] K. P. Hart, Strong collectionwise normality and M. E. Rudin's Dowker space, Proc. Amer. Math. Soc. 83 (1981), 802-806.

[Ma] M. J. Mansfield, Some generalizations of full normality, Trans. Amer. Math. Soc. 86 (1957), 489-505.

[Ru] M. E. Rudin, A normal space X for which $X \times I$ is not normal, Fund. Math. 73 (1971), 179–186.

[Sc] B. M. Scott, Toward a product theory for orthocompactness, Studies in Topology, Academic Press, New York, 1975, pp. 517-537.

Subfaculteit Wiskunde, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands