LOWER BOUNDS FOR THE UNKNOTTING NUMBERS OF CERTAIN TORUS KNOTS

МАКОТО УАМАМОТО

ABSTRACT. In this paper we shall show that the unknotting numbers of the $(l, 2kl \pm 1)$ -torus knots are at least $(k(l^2 - 1) - 2)/2$ for l odd and $(kl^2 - 2)/2$ for l even, where l is an integer greater than one and k is a positive integer.

1. Introduction. Unless otherwise stated all manifolds and maps are smooth and all knots and links are in S^3 .

The unknotting number of a knot is the minimum number of crossings which must be changed to make the knot trivial. Let l and m be integers. The (l,m)-torus link is the link which lies on an unknotted torus and sweeps around it l times in the longitude and m times in the meridian. When l and m are relatively prime, it is a knot and called the (l,m)-torus knot. Milnor [3] conjectured that the unknotting number of a torus knot is equal to the genus of it. It is well known that the genus of the (l,m)-torus knot is equal to (l-1)(m-1)/2. It is not hard to see that the unknotting number of a torus knot is at most the genus of it. In this paper we shall show the following.

THEOREM A. Let l be an integer greater than one and k a positive integer. Then the unknotting numbers of the $(l, 2kl \pm 1)$ -torus knots are at least $(k(l^2 - 1) - 2)/2$ if l is odd, and $(kl^2 - 2)/2$ if l is even.

Murasugi [4] showed that the unknotting number of the (2, m)-torus knot is equal to the genus of it. Weintraub [8] showed that the unknotting number of the (m-1, m)-torus knot is at least $(m^2-5)/4$ if m is odd, and $(m^2-4)/4$ if m is even.

The author wishes to thank Professors Mitsuyoshi Kato and Hiroshi Noguchi for helpful suggestions.

2. Preliminaries. The following is a theorem of Rohlin [5], Hsiang-Szczarba [9], Thomas-Wood [6] and Weintraub [7].

THEOREM 1. Let N be an oriented, connected, simply connected, closed 4-manifold. Let M be an oriented, connected, closed surface embedded in N. Suppose that M represents a 2-homology class [M] of $H_2(N;Z)$ and that [M] is divisible by a positive integer d in the free abelian group $H_2(N;Z)$. Let g_M be the genus of M. Then

$$2g_M \ge \frac{[M]^2}{d^2} \frac{d^2-1}{2} - \operatorname{rank} H_2(N; Z) - \operatorname{signature} N$$

for d odd, and similarly for d even with $d^2/2$ instead of $(d^2-1)/2$, where $[M]^2$ is the self-intersection number of M.

Received by the editors August 26, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57M25.

Key words and phrases. Torus knot, torus link, unknotting number of a knot, genus of a knot.

FIGURE 1

FIGURE 2

The following theorem originally due to Boardman [1] and Weintraub [8].

THEOREM 2. Let N be an oriented 4-manifold, and let $N_0 = N - \operatorname{Int} B^4$, where B^4 is an embedded 4-ball. Suppose $\alpha \in H_2(N_0, \partial N_0; Z)$ is represented by an embedding $\Phi \colon (B^2, S^1) \to (N_0, \partial N_0)$ and let K denote the knot given by $\Phi | S^1 \colon S^1 \to \partial N_0 = S^3$. If u is the unknotting number of K, then α is represented by an embedded 2-sphere in N # (uW), where $W = CP^2 \# (-CP^2)$.

The proof is given by using W instead of \mathbb{CP}^2 and $-\mathbb{CP}^2$ of Theorem 7 of [8].

FIGURE 3

FIGURE 4

FIGURE 5

3. Proof of Theorem A. Let α and β be the generators of

$$H_2(S^2\times S^2-\operatorname{Int} B^4,\partial (S^2\times S^2-\operatorname{Int} B^4);Z),$$

and let l and m be positive integers. Then $l\alpha + m\beta$ can be represented by an embedded disk, say $D_{l,m}$. Let $K_{l,m}$ be the knot which is the boundary of $D_{l,m}$.

FIGURE 6

FIGURE 7

LEMMA. Let u be the unknotting number of $K_{l,m}$. Suppose that l and m are divisible by a positive integer d. Then

$$u \geq egin{cases} rac{lm(d^2-1)}{2d^2}-1 & \textit{if d is odd}, \ rac{lm}{2}-1 & \textit{if d is even}. \end{cases}$$

PROOF. By Theorem 2, $l\alpha + m\beta$ is represented by an embedded 2-sphere in $(S^2 \times S^2) \# (uW)$. Then, by Theorem 1,

$$0 \ge \frac{2lm}{d^2} \frac{d^2 - 1}{2} - 2(1 + u)$$
 if d is odd

and

$$0 \ge \frac{2lm}{d^2} \frac{d^2}{2} - 2(1+u)$$
 if d is even,

and elementary algebra yields the lemma.

Let l be an integer greater than one, and let k be a positive integer. We show that the class

$$l\alpha + kl\beta \in H_2(S^2 \times S^2 - \operatorname{Int} B^4, \partial(S^2 \times S^2 - \operatorname{Int} B^4); Z)$$

can be represented by an embedded disk with boundary the $(l, 2kl \pm 1)$ -torus knot. The class $l\alpha + kl\beta$ can be represented by l+kl embedded disks with boundary the link L of l+kl components illustrated in Figure 1. Let $K_1, \ldots, K_l, K'_1, \ldots, K'_{kl}$

The (4,8)-torus link FIGURE 8

FIGURE 9

FIGURE 10

be as in Figure 1. Then $l\alpha+kl\beta$ can be represented by the disk obtained by connecting $K_1,\ldots,K_l,K_1',\ldots,K_{kl}'$ by l+kl-1 strips in $\partial(S^2\times S^2-\operatorname{Int} B^4)=S^3$ (see Kervaire–Milnor [2]). We connect K_i and $K_{(j-1)l+i}'$ by the strip $E_{i,j}$ as in Figure 2 for $i=1,\ldots,l$ and $j=1,\ldots,k$, thereby obtaining a collection of l disks representing the class $l\alpha+kl\beta$, whose boundaries form a link of l components.

Let L' be the link which consists of the boundaries of the disks obtained by the above construction. We show that the link L' is the (l, 2kl)-torus link as follows; it is sufficient to show that there is an isotopy of S^3 which deforms the part of L'contained in the 3-ball B in Figure 2 into the part of the (l, 2l)-torus link contained in the 3-ball B' in Figure 3 and which is relative to the complement of B. In Figures 4, 5, 6 and 7 we illustrate only the parts contained in the 3-balls, and all isotopies are relative to the complements of the 3-balls. We may consider that the components $K_2, \ldots, K_l(K'_2, \ldots, K'_l)$ of L' are contained in a narrow tube T (resp. T') as in Figure 4. We connect K_1 and K'_1 by the strip $E_{1,1}$. Then we have the link which is isotopic to the link illustrated in Figure 5. We take $K_2(K_2)$ out of T (resp. T') and connect K_2 and K'_2 by the strip $E_{2,1}$. Then we have the link which is isotopic to the link as in Figure 6, where the components $K_1 \# K'_1$ and $K_2 \# K_2'$ form the (2,4)-torus link. We suppose that we have the link as in Figure 7 after connecting K_i and K_i by the strip $E_{i,1}$ for $i=1,\ldots,r-1$ $(2 \le r \le l-1)$ as above and that the components $K_1 \# K'_1, K_2 \# K'_2, \ldots, K_{r-1} \# K'_{r-1}$ form the (r-1,2(r-1))-torus link. We connect K_r and K'_r by the strip $E_{r,1}$ as in Figure 7. Then we have the link which is isotopic to the similar link as in Figure 7 with $K_{r-1} \# K'_{r-1}, K_r \# K'_r, K_{r+1} \text{ and } K'_{r+1} \text{ instead of } K_{r-2} \# K'_{r-2}, K_{r-1} \# K'_{r-1},$ K_r and K'_r . Then we have inductively the link $(K_1 \# K'_1) \cup \cdots \cup (K_l \# K'_l)$ which is isotopic to the (l, 2l)-torus link by the composite of the above isotopies as required. Therefore we have shown that the link L' is the (l, 2kl)-torus link.

The (l, 2kl)-torus link is represented as in Figure 8. Let K_i'' be the component $K_i \# K_i' \# K_{l+i}' \# \dots \# K_{(k-1)l+i}'$ of L'. We connect K_i'' and $K_{i+1}''(i=1,\dots,l-1)$ by the strip E_i' as in Figure 9. Then we have the (l, 2kl-1)-torus knot. When we connect K_i'' and $K_{i+1}''(i=1,\dots,l-1)$ by the strip E_i'' as in Figure 10, we have the (l, 2kl+1)-torus knot. By Lemma, we obtain Theorem A.

REFERENCES

- 1. J. Boardman, Some embeddings of 2-spheres in 4-manifolds, Proc. Cambridge Philos. Soc. 60 (1964), 354-356.
- M. Kervaire and J. Milnor, On 2-spheres in 4-manifolds, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1651-1657.
- 3. J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies, No. 61, Princeton Univ. Press, Princeton, N.J., 1968.
- K. Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387-422.
- V. A. Rohlin, Two-dimensional submanifolds of four dimensional manifolds, Functional Anal. Appl. 5 (1971), 39-48.
- P. E. Thomas and J. Wood, On manifolds representing homology classes in codimension 2, Invent. Math. 25 (1974), 63-89.
- 7. S. H. Weintraub, Z_p -actions and rank of $H_2(N^{2n})$, J. London Math. Soc. (2) 13 (1976), 567–572.
- Inefficiently embedded surfaces in 4-manifolds, Algebraic Topology Aarhus 1978 (J. L. Dupont and I. H. Madsen, eds.), Lecture Notes in Math., vol. 763, Springer-Verlag, Berlin and New York, 1979.
- 9. W. C. Hsiang and R. H. Szczarba, On embedding surfaces in four-manifolds, Algebraic Topology, Proc. Sympos. Pure Math., Vol. 22, Amer. Math. Soc., Providence, R.I., 1971.

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, SHINJUKU, TOKYO, 160, JAPAN