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LOWER BOUNDS FOR THE UNKNOTTING NUMBERS

OF CERTAIN TORUS KNOTS

MAKOTO YAMAMOTO

ABSTRACT. In this paper we shall show that the unknotting numbers of the

(/, 2kl ± l)-torus knots are at least (k(l2 - 1) - 2)/2 for I odd and (kl2 - 2)/2

for I even, where I is an integer greater than one and k is a positive integer.

1. Introduction. Unless otherwise stated all manifolds and maps are smooth and

all knots and links are in S3.

The unknotting number of a knot is the minimum number of crossings which

must be changed to make the knot trivial. Let I and m be integers. The (l,m)-torus

link is the link which lies on an unknotted torus and sweeps around it I times in the

longitude and m times in the meridian. When Z and m are relatively prime, it is

a knot and called the (l,m)-torus knot. Milnor [3] conjectured that the unknotting

number of a torus knot is equal to the genus of it. It is well known that the genus

of the (I, m)-torus knot is equal to (/ — l)(ra — l)/2. It is not hard to see that the

unknotting number of a torus knot is at most the genus of it. In this paper we shall

show the following.

THEOREM A. Let I be an integer greater than one and k a positive integer. Then

the unknotting numbers of the (1,2kl ± \)-torus knots are at least (k(l2 — 1) — 2)/2 if

I is odd, and (kl2 — 2)/2 if I is even.

Murasugi [4] showed that the unknotting number of the (2,m)-torus knot is

equal to the genus of it. Weintraub [8] showed that the unknotting number of the

(m — 1, m)-torus knot is at least (m2 — 5)/4 if m is odd, and (m2 — 4)/4 if m is even.

The author wishes to thank Professors Mitsuyoshi Kato and Hiroshi Noguchi for

helpful suggestions.

2. Preliminaries. The following is a theorem of Rohlin [5], Hsiang-Szczarba [9],

Thomas-Wood [6] and Weintraub [7].

THEOREM 1. Let N be an oriented, connected, simply connected, closed 4-

manifold. Let M be an oriented, connected, closed surface embedded in N. Suppose

that M represents a 2-homology class [M] of H2(N;Z) and that [M] is divisible by

a positive integer d in the free abelian group H2(N; Z). Let gM be the genus of M.

Then

2ffM > W-ñ-rankH2(N; Z) - signatured
d¿       2

for d odd, and similarly for d even with d2/2 instead of(d2 —1)/2, where [M]2 is the

self-intersection number of M.
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The following theorem originally due to Boardman [1] and Weintraub [8].

THEOREM 2. Let N be an oriented 4-manifold, and let N0 = N — Int54, where

BA is an embedded 4-ball. Suppose a E H2(N0,9N0; Z) is represented by an embed-

ding 4> : (B2, S1) -* (N0, dN0) and let K denote the knot given by ̂ S1 : S1 -* dN0 =

S3. Ifuis the unknotting number of K, then a is represented by an embedded 2-

sphere in N # (uW), where W = CP2 # (-CP2).

The proof is given by using W instead of CP2 and -CP2 of Theorem 7 of [81.
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3. Proof of Theorem A. Let a and ß be the generators of

H2(S2 XS2-IntS4, d(S2 xS2-IntB4);Z),

and let i and m be positive integers.   Then la + mß can be represented by an

embedded disk, say Z?i,m. Let /C¡,m be the knot which is the boundary of £>¡,m.
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LEMMA.   Let u be the unknotting number of Kí¡m.   Suppose that I and m are

divisible by a positive integer d. Then

(lm(d2-l) .r ,.     ,,
-1    if dis odd,

u> { 2d2
Im

T if d is even.

PROOF.   By Theorem 2, la + mß is represented by an embedded 2-sphere in

(S2 X S2) # (uW). Then, by Theorem I,

and

21m H2 — 1
0>~^—--2(1+«)   if dis odd

d¿       2

2lm d2
0>—-——2(1 + u)   if dis even,

and elementary algebra yields the lemma.

Let I be an integer greater than one, and let A; be a positive integer. We show

that the class

la + klß E H2(S2 X S2 -lntB4,d(S2 X S2 -lntB4);Z)

can be represented by an embedded disk with boundary the (1,2kl + l)-torus knot.

The class la + klß can be represented by I + kl embedded disks with boundary the

link L of I + kl components illustrated in Figure 1.   Let Ki,...,Ki, K[,..-,K'kl
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The (4,8)-torus link

Figure 8

Figure 9

Figure 10

be as in Figure 1. Then la + klß can be represented by the disk obtained by

connecting K1,...,Kl,K'i,...,K'klbyl + kl-l strips in d(S2 xS2-Int-B4) = S3
(see Kervaire-Milnor [2]). We connect Ki and K'¡,_n¡+¿ by the strip Eij as in

Figure 2 for i = 1,...,/ and j = l,...,k, thereby obtaining a collection of I disks

representing the class la + klß, whose boundaries form a link of I components.
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Let L' be the link which consists of the boundaries of the disks obtained by the

above construction. We show that the link L' is the (I, 2A;/)-torus link as follows;

it is sufficient to show that there is an isotopy of S3 which deforms the part of L'

contained in the 3-ball B in Figure 2 into the part of the (I, 2/)-torus link contained

in the 3-ball B' in Figure 3 and which is relative to the complement of B. In

Figures 4, 5, 6 and 7 we illustrate only the parts contained in the 3-balls, and all

isotopies are relative to the complements of the 3-balls. We may consider that the

components K2,...,Ki (K'2,..-,K\) of L' are contained in a narrow tube T (resp.

T') as in Figure 4. We connect Ki and K[ by the strip /?i,i. Then we have the

link which is isotopic to the link illustrated in Figure 5. We take K2(K'2) out of

T (resp. T") and connect K2 and K'2 by the strip £2,1- Then we have the link

which is isotopic to the link as in Figure 6, where the components Ki#K\ and

K2 # K2 form the (2,4)-torus link. We suppose that we have the link as in Figure

7 after connecting Ki and K\ by the strip £^1 for i = 1,..., r — 1   (2 < r < I — 1)

as above and that the components Kt # K\, K2 # K'2,...,/T,—1 # K'r-i form the

(r — 1,2(r — 1))-torus link. We connect Kr and K'r by the strip Er¡í as in Figure

7. Then we have the link which is isotopic to the similar link as in Figure 7 with

Kr-i # K'r_lt Kr # K'r, Kr+i and K'r+1 instead of Kr-2 # K'r_2, Kr-X # K'r_v

Kr and K'r. Then we have inductively the link (Ki # K[)U- • -U(Ki # K¡) which is

isotopic to the (l, 2¿)-torus link by the composite of the above isotopies as required.

Therefore we have shown that the link L' is the (1,2fcZ)-torus link.

The (I, 2AcZ)-torus link is represented as in Figure 8. Let K'¡ be the component

KiXK'iiï K'l+l #... # k',k_í)í+i of I!. We connect K'¡ and K'¡+1 (i = 1,...,/-1)

by the strip E\ as in Figure 9. Then we have the (/, 2kl — l)-torus knot. When we

connect K'¡ and K'¡+i (i = 1,...,/ — 1) by the strip E'¡ as in Figure 10, we have the

(1,2kl + l)-torus knot. By Lemma, we obtain Theorem A.
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