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SPACES FOR WHICH THE GENERALIZED CANTOR SPACE 2J

IS A REMAINDER

YUSUF ÜNLÜ

Abstract. Let X" be a locally compact noncompact space, m be an infinite cardinal

and | J | = m. Let F( X) be the algebra of continuous functions from X into R which

have finite range outside of an open set with compact closure and let /( X) = {g G

F(X): g vanishes outside of an open set with compact closure}. Conditions on

R(X) = F(X)/I(X) and internal conditions are obtained which characterize when

X has 2J as a remainder.

1. Introduction. Throughout this paper all spaces are assumed to be completely

regular and Hausdorff. We let LC denote the class of all locally compact and

noncompact spaces. A compactification of a space A" is a compact space which

contains A" as a dense subspace and a remainder of X is any aX \ X where aX is a

compactification of X. If aX and bX are two compactifications of X, then aX *£ bX if

there is a continuous function g: aX -» bX such that g(x) = x for each x G X. For a

set A let | A | denote the cardinality of A.

Recently Hatzenbuhler and Mattson [HM] have obtained an internal characteriza-

tion which characterizes when a given space X G LC has every compact metric space

as a remainder. The condition given by them assures that if X satisfies this condition

the Cantor space 2N is a remainder of X, where N is the set of natural numbers and 2

is the discrete space {0,1}. Their result then follows from the fact that every

compact metric space is a continuous image of 2N. It is thus natural to ask when for

a given cardinal m and a space X E LC, 2J is a remainder of X where | J1 = m. In

this connection we briefly recall the construction of the Freudenthal compactifica-

H on

Definition 1.1. Let A" be a space. An ordered pair (G, H) is called a.nf-pair in X

if G and H are disjoint open subsets of X and X \ (G U H) is compact.

Let X E LC. For subsets A and B of X, let us define the relation 8 by A 8 B if and

only if there is an /-pair (G, H) in X such that cl XA EG and cl XB E H. It is well

known that 8 is a compatible proximity relation on X and the Samuel compactifica-

tion fX corresponding to this proximity relation is the Freudenthal compactification

of X [W, 41.2, 41B]. It is known [R] that fX\ X is zero dimensional and if aX is any

compactification of X such that aX \ X is zero dimensional, then aX < fX. By a zero

dimensional space, we mean a space which has a basis consisting of clopen, i.e., both
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closed and open sets. It follows in particular that if 2J is a remainder of X, then 2J is

a continuous image oîfX\X.

In [E] Efimov introduces the concept of a dyadic family of power m and proves

that [0, l]y, where \J\— m, is a continuous image of a compact space Y if and only if

Y has a dyadic family of power m. In the view of these observations, one naturally

expects to obtain an internal characterization, via the Freudenthal compactification

which characterizes when a space X E LC has 2J as a remainder. For this purpose

we slightly modify Efimov's definition of a dyadic family.

Definition 1.2. Let A" be a space, m be a cardinal and J be a set with | J \ — m. A

family {{Upx; Ujl):j E J] consisting of/-pairs in A" is called a dyadic family of power

m in X if for every finite collection of distinct elements/,,... j„ of J and any finite

sequence /',,... ,in in {-1,1}, clx(c/|' n • ■ • n Uf*) is not compact.

We prove that if A" G LC, m is an infinite cardinal and \J\ — m, then 2J is a

remainder of X if and only if X has a dyadic family of power m. We also give an

algebraic characterization which is equivalent to the one given above.

For a space X let k(A') denote the set of all open subsets of X with compact

closure in X. Let C( A") be the algebra of all continuous functions from X into the set

of real numbers R.

Definition 1.3. Let X E LC. We set

F(X) = (gG C(X):g(X\V) is finite for some V E k( X)),

/(A") = {g G C(A-): A\g-'(0) G «(A")}.

Clearly F(X) is a subalgebra of C(X) and I(X) is an ideal in F(X). We set

R(X) = F(X)/I(X).
We prove that if A' G LC, then the structure space Max F( X) of F(X) can be

identified with fX. We also prove that if m is an infinite cardinal and | J \ — m, then

2J is a remainder of X if and only if the group of units of R( X) has a subgroup G of

cardinality m such that g2 — 1 for every g G G and G is linearly independent over R.

2. Structure space of F( X). If g is a function from a set A into R, Z(g) — {a E A :

g(a) = 0} is the zero set of g. If a E R, then we will use the same notation a to

denote the constant function from A into R whose value is a. Let X E LC. It is easy

to verify that {X\Z(g): g E I(X)} = Bx forms a base for open sets in X. For

x G Ar let us define A/x = (g E P"(A"): g(x) = 0}. Then Mx is a maximal ideal in

F( X) and if x and v are distinct elements of X, then Afx # Mr since Bx forms a base

for open sets in X. A maximal ideal M of F( X) is, by definition, fixed ii M = Mx for

some x EX, otherwise M is free.

Let S be any commutative ring with identity. The structure space of S is the set of

all maximal ideals Max 5 of S topologized by taking the sets of the form E(s) = [M

E Max S: s E M) as a base for closed sets [GJ, 7M]. Max S with this topology is

compact but not necessarily Hausdorff. If S is von Neumann regular, then Max S is

Hausdorff. Recall that S is von Neumann regular if for each a E S, there exists

b E S such that a2b = a.
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Proposition 2.1. Let X E LC and M G Max F( X).

(a) R(X) is von Neumann regular and hence Max R(X) is a compact Hausdorff

space.

(b) M is free if and only if I(X) E M.

Proof, (a) Let g E F(X) and V E k(X) be such that g(A\ V) = {«„.. .,«„}.

Note that X\V =£ 0 since X is not compact. Let K = Z(g) and L =

g~l({a¡: a, ^ 0}). Then K and L are disjoint zero sets in X. Thus there is a

continuous function Ä: Ar -* [0,1] such that K E intxZ(h) E Z(h) = A and L Ç

h~\\) E X\vaXxZ{h) = B.A and B are closed sets in X and /I U 5 = X. Define w:

X -» R by w(x) = 0 if x G ^1 and w(x) = /z(x)/g(x) if x G 5. w is well defined and

continuous. Note that w(X\ V) E {0} U {l/a,: a, * 0}. It follows that w E F(X)

and g2w — g G /( A'). Thus R( X) is von Neumann regular.

(b) Let x G A" and V E k( X) be a neighbourhood of x. Then there is a continuous

function g: X *• [0,1] such that g(x) = 1 and g(X\ V) = {0}. Thus g G /( A") \Mx.

Consequently a fixed maximal ideal cannot contain I(X). Now, let M be a free

maximal ideal. Suppose that there exists g G I(X)\M. Since M is maximal, then

gk - 1 G M for some A: G F( A-). Let F = X\Z(g) E k(X). For each x G cl * F,

M\MX¥= 0. Thus cl^FÇ U{A"\Z(/): t E M). Since clxK is compact, then

there are tx,...,tnEM such that cl^FÇ U{Ar\Z(í,): ¿= 1,...,«}. Let t = t}

H-\-t2 E M. Then cl^ V EX\ Z(t). There is an 0 < e < 1 such that t(x) » e

for each x G cl^ V. If r = (gk - l)2 + t, then r G M and r(x) > e for all x G X.

Thus M contains an invertible element, a contradiction. So M D /(I).

We have already seen that the function x -> Mx sets up a one-to-one correspon-

dence between X and the fixed maximal ideals in F( X). Hence X already constitutes

an index set for the fixed maximal ideals in F(X). We enlarge it to an index set fX

for MaxF(X), so that MaxF(A') = {My: y E fX) and for distinct y, z EfX,

My ¥> Mz. For gEF(X) let F(g) = [y E fX: g E My}. If 6: fX -* Max F(X) is the
function defined by 0(y) = My, then 8~l(E(g)) = F(g) for g G F(X). Thus [F(g):

g E F(X)} forms a base for closed sets of a topology on fX and with this topology

fX is compact and homeomorphic to Max F( X).

Theorem 2.2. Let X G LC. For a subset A of X let A' = c\fx A \ X.

(a)fXis a compactification of XandfX\Xis homeomorphic to Max R(X).

(b) Each function gEF(X) has a unique continuous extension ge: fX^-R and

F(g) = Z(g<).

(c) Let (G, H) be an f-pair in X. Then there exist g E F(X) and WE k(X) such

that X\(GL) H) E W, c\xG\WEg-\-\) and c\xH\W E g~'(l). // U is any

open subset of X, then (GO U)' = G' D U'. In particular G' and H' are disjoint

clopen subsets of X' whose union is X'.

(d) fX is the Freudenthal compactification of X.

Proof, (a) We have already observed that fX is compact. By 2.1(b) if g G I(X),

then fX\F(g) = X\Z(g). It follows that the topology on X coincides with the
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subspace topology inherited from fX. Also, X = U{X\Z(g): g G I(X)} =

U{fX\F(g): gEl(X)}. So X is an open subspace of fX. If h E F(X) and

fX\F(h)=£ 0, then h ^ 0. Sox EfX\F(h) for somex G X Thus X is dense in /X

We now proceed to show that fX is Hausdorff. Let y, z EfX and y ¥= z.lî y, z E X,

then v and z can be separated by open sets in X and hence in fX since X is open in

/X Thus suppose without loss of generality that z £ X. Let g E MV\MZ. By 2.1(a),

g2A — g E I(X) E Mz for some /i G F(X). Let b = gh — 1. Since A/2 is prime, then

b E Mz. Note also that b £ Afr Let V = X\ Z(gb) E k(X). Let W E k(X) be such

that clxV E W. There is a continuous function u: X -> [0,1] such that cl^FçZf«)

and X\ W E Z(u - 1). Note that u - 1 G /(*) and wgZ? = 0. So z EfX\F(ug),

y E fX\F(b) and f(wg) U F(b) = fX. This proves that fX is Hausdorff. To see that

X' and P = Max R(X) are homeomorphic, consider the natural homomorphism d>:

F(X) -» /?( A"). ¿> induces a bijection <i>': P -» X defined by <f>'(N) = z if and only if

4>~\N) = Mz. ¿>' is continuous since (d>')~'(F(g)\X) «= £(g + 7(X)) for every

g G P"(A"). Both X' and P are compact Hausdorff, thus rf>' is a homeomorphism.

(b) Let gEF(X) and FGk(A') be such that g(X\ F) = {«,,...,<*„} where

a,- ̂  ctj for /' #/. Let h = (g - a,) • • • (g - a„). Since X\ Z(A) Ç V, then A G 7(X).

So fX = cl^ F U F(h) = c\xVVJ F(g - a,) U • • • UF(g - a„). If i i-j, then 0 **

a, — a7 Í My, for any v G fX. Thus F(g — a,) Q F(g — a,) = 0 for i ¥=j. More-

over if x G cl^ V D F(g — a¡), then g — a, G Mx, i.e., g(x) = otj, We define ge:

fX^Rhy ge(y) = a,, if y E F(g - a,) and g%y) = g( v) if v G c\x V. Then ge is

well defined and continuous. It is routine to verify that F(g) = Z(ge) and ge

extends g.

(c) Let I = X\(GU H). Let V, W E k(X) be such that LEW Ec\xWEV.

Then C = cl^G D clx V\ W and D = clxH D c\xV\W are disjoint closed subsets

of the compact space cl^ V. Thus there is a continuous function h: c\x V -» [-1,1]

such that C ç A"'(-i) and D Ç A"'(l). Let g: A" ̂ [-1,1] be defined by g(x) = -1

if x G clxG\W, g(x) = 1 if x G cl^/fxH/andgix) = A(x) if x G cl^K It is easy

to see that g satisfies the required properties. Since W E k(X) and L is compact,

then ge(G) E {-1}, gf(//) E {1} and G' U H' = X. So G' and H' axe disjoint

clopen subsets of X' whose union is X. Now let £/ be any open subset of X. Suppose

that y E U' n G' \(U D G)' for some v G A". There is an open neighbourhood S of

y in /X such that S D (L U H' U (£/ n G)) = 0. Then 5 n 1/ Ç 7/ and conse-

quently v G (5 n Í/)' Ç #', a contradiction. So (U n G)' = £/' D G'.

(d) We must show that if A, B E X, then clfXA n cl/A-5 — 0 ii and only if there

is an/-pair (G, i/) in X such that cl^-^4 E G and cl^i? Ç H. "if" part is clear from

(c). Thus suppose that A, B E X and c\fxA n cl/A-5 = 0. (F(g): g G F(X)} =

(Z(ge): g E F(X)} is a basis for closed sets in fX and it is closed under finite

intersections. Hence there exist g, h E F(X) such that c\fXA E F(g), e\fxB E F(h)

and F(g) n F(h) = Z(ge) n Z(Ae) = Z((g2 + A2)e) = 0. This implies that g2 +

A2 is a unit in F(X). Let w = g2/(g2 + A2). Then 0 < w(x) < 1 for all x G X Let

V E k(X) be such that w(X\ V) = (a,,... ,a„}. Pick a real number 0 < a < 1 such

that a ^ a, for i = 1,... ,n. Let G = {x G X w(x) < a) and Ï7 = {x G X: w(x) >

a). Then cl^ Ç G, cl^-B E H, G D H = 0 and X\(GU H)E (we)~\a) E X.

Thus (G, //) is an /-pair with the required properties.
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3. 2J as a remainder. Let D be the discrete space {-1,1}. Then 2J is homeomor-

phic to DJ. In what follows, it will be more convenient to work with D than 2 and

we will do so. We first state a lemma which follows easily from Theorem 2.2(c) by

induction.

Lemma 3.1. Let X E LC and (G,, //,),... ,(G„, Hn) be a finite sequence off-pairs in

X.Then(Gx C\ ■■■ DGJ = G\ D ■ ■ ■ C\G'n, where for a subset A ofX,A' = cl/xA\X.

We now state our main result.

Theorem 3.2. Let X E LC, m be an infinite cardinal andJ be a set of cardinality m.

Then the following are equivalent.

(a) X has a dyadic family of power m.

(b) The group of units of R(X) has a subgroup G of cardinality m such that g2 = 1

for all g E G and G is linearly independent over R.

(c) DJ is a remainder of X.

Proof, (a) implies (b). Let A = {(U~\ c/'):/ G J} be a dyadic family of power m

in X For each/ G J we pick a function gj E F(X) and a member V- of k(X) such

that for i G D c\xUj' \Vj E gj\i). The existence of gj is guaranteed by 2.2(c). Let

rj = gj + I(X),j G /.Since

X\Z{g2-\)ELJUdxVJ

where Lj = X\(U~i U £/■'), then rf — 1 for all/ G J. Let G be the group generated

by {ry: j E J). Then clearly r2 = 1 for all r E G. Let/,,... ,/„ be distinct elements of

J and H be the subgroup of G generated by A = {r., : k = 1,...,«}. Let T be the

linear subspace of R(X) spanned by H. Since | A |< « and ry2 = 1 for all/ G /, then

|Jïj«2n; It follows that dimRT<2". For an «-tuple r¡ = (tj,,. .. ,tj„) G D" let

e„ G F(X) be defined by

^ = 2-"(l+7,,gy|)---   (l+7,„gj.

Let P* = cl* Vh U LA, 1 =£ k < «, and P = P, U • • • UP„. We claim that e,, £ /(X).

For suppose that e^ G /( A") and V = X\Z(e7]). Then P U cl* Fis compact. Thus if

Q = U/{< n • • • n ty», then Q = Q\P \J e\xV ^ 0 since A is a dyadic family. Let

x G g. Then for 1 < k < n, x G c/* \ ^ which implies that 2"'(1 + T¡kgJk(x)) =

2"'(1 + vl) = L Thus 0 = e(x) = 1, a contradiction. Let ê„ = e, + /(X). Then Í,

is a nonzero element of T. If tj and p are distinct «-tuples in D", then it is easy to see

that êvêp — 0 and ên is an idempotent in T. Thus (êv. tjGD"} is a linearly

independent subset of T containing exactly 2" elements. This shows that dimR T = 2".

Thus | H | = 2" and H is linearly independent over R. Since every finite subset B of G

is also a subset of a subgroup H described as above, then B is linearly independent.

Also the argument given above shows that | {rf,} E J) \= m. Thus | G\ = m.

(b) implies (c). G is a 2-group and so it has a basis. This means that there is a

subset B of G such that if bx,... ,bn are distinct elements of B, then bx ■ ■ ■ bn ¥= 1 and

each element of G can be written as a finite product of elements in B. Since \G\— m

and m is an infinite cardinal, then \B\= m. We define a function #: Max R(X) -» DB

as follows: Let P = Max Ä( A') and M G P. If Z> G 5 then b2 - 1 G M. Thus either
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b— lEMorb+lEM. But 2ÍM and so only one of b — 1 or b + 1 may be in

M. We define ̂ (M)(b) = -1 if b + 1 G M and xp(M)(b) = 1 if è - 1 G M. Let p¿;

DB -> D denote the 6th projection. If bx,...,bn are distinct elements of B and

/„...,/„ G A then ^-\tt^(íx) H ■ ■ ■ nir^i^) = P\E((bx + ix) ■ ■ ■ (bn + /„)).

Hence i// is continuous. Moreover ^ is onto, for let x G DB. The ideal T of R(X)

generated by {b — x(b): b E B) is distinct from R(X). For otherwise there are

elements r,,... ,rn E R(X) and £>,,... ,bn E B such that b¡'s are distinct and

(0 rx(bx - x(bx)) + ■ ■ ■ +rn(bn- x(bn)) = \.

Let /* be the product of the elements bk + x(bk), 1 «£&<«. Then multiplying both

sides of (i) by r we obtain r = 0. Since 5 is a basis for G, then r is a linear

combination of the pairwise distinct elements 1, bx,...,bn, bxb2,...,bxb2 ■ ■ ■ bn of G

with 1 having the coefficient + 1. This is a contradiction as G is linearly independent

over R. So T ¥* R(X). If M is a maximal ideal containing T, then -p(M) — x. So ip is

onto. It follows that DB is a continuous image of P and so of fX\Xhy 2.2(a). Now,

utilizing upper semicontinuous decompositions as in [M] we can construct a com-

pactification aX of X with aX \ X - D B.

(c) implies (a). Let aX be a compactification of X such that aX\X = DJ. Then

fX > aX since Z)y is zero dimensional. Let <f>: fX\X -» Z)y be a continuous surjec-

tion. For/ G 7 and ¡' G Z), let us set Wj = $~l(«)"l(i)). Then h/_1 and W/1 are

disjoint clopen sets in X whose union is X. Let V~x and F' be disjoint open

neighbourhoods of W~x and W\ respectively, in fX. Let U/ = X n K* for i G D

and /G/. If r= F^"1 U V>, then (X\Jn I)n7=0 and T is an open

neighbourhood of X. Thus cl/A-(X\Xn T) E X, i.e., X\Xn F is compact. So

(U~\ Uj1) is an /-pair in X for each/ G /. Let A be the set of all these pairs. If

/,,...,/, are distinct elements of / and /',,... ,/'„ G D, then by Lemma 3.1, ( D Iffy'

= H (U?kf — fi Wjkk = <b~\ D ir~\ik)) =£ 0 where the intersections are taken over

k, 1 *£ k < «. Thus A is a dyadic family of power m in X
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