TRACIAL POSITIVE LINEAR MAPS OF C*-ALGEBRAS

MAN-DUEN CHOI¹ AND SZE-KAI TSUI²

ABSTRACT. A positive linear map $\Phi: \mathfrak{A} \to \mathfrak{B}$ between two C^* -algebras is said to be tracial if $\Phi(A_1A_2) = \Phi(A_2A_1)$ for all $A_i \in \mathfrak{A}$. A tracial positive linear map $\mathfrak{A} \to \mathfrak{B}(\mathfrak{K})$ is analyzed as the composition of a tracial positive linear map $\mathfrak{A} \to C(X)$ followed by a positive linear map $C(X) \to \mathfrak{B}(\mathfrak{K})$.

Tracial positive linear maps are the natural generalizations of tracial states on C^* -algebras. We invite special attention to the natural occurrence of tracial positive linear maps in the study of finite von Neumann algebras, Toeplitz operators, as well as others (see Examples 1-5 in the context).

In consideration of the general global structure, we are concerned with two familiar classes of tracial positive linear maps: The first is the class of tracial positive linear maps from a C^* -algebra $\mathfrak A$ into a commutative C^* -algebra C(X)—actually, each such map can be described as a continuous (with respect to the compact Hausdorff space X) family of finite traces on $\mathfrak A$. The second class consists of positive linear maps from a commutative C^* -algebra C(X) into $\mathfrak B(\mathcal K)$. The main theorem asserts that the compositions of these two classes exhaust all; namely, each tracial positive linear map $\mathfrak A \to \mathfrak B(\mathcal K)$ admits a factorization $\mathfrak A \to C(X) \to \mathfrak B(\mathcal K)$ through a commutative C^* -algebra C(X). Therefore, every tracial positive linear map is completely positive, and consequently, each contractive tracial positive linear map $\Phi \colon \mathfrak A \to \mathfrak B$ satisfies the Schwarz inequality $\Phi(A^*A) \geqslant \Phi(A^*)\Phi(A)$. This answers a question raised in [4].

Throughout this paper, general C^* -algebras are written in the German type \mathfrak{A} , \mathfrak{B} . We denote by $\mathfrak{B}(\mathfrak{K})$ (resp. $\mathfrak{K}(\mathfrak{K})$) for the C^* -algebra of all bounded operators (resp. all compact operators) on a Hilbert space \mathfrak{K} . A linear map $\Phi \colon \mathfrak{A} \to \mathfrak{B}$ is said to be *tracial* if $\Phi(A_1A_2) = \Phi(A_2A_1)$ for all A_i in \mathfrak{A} . A linear map $\Phi \colon \mathfrak{A} \to \mathfrak{B}$ is said to be *positive* if $\Phi(A)$ is positive for every positive $A \in \mathfrak{A}$. For each operator A, we write $C^*(A)$ for the C^* -algebra generated by A.

We begin with several examples to illustrate the natural occurrence of tracial linear maps in structure theory.

EXAMPLE 1. If $\mathfrak A$ is a unital C^* -algebra with a unique tracial state τ (in particular, if $\mathfrak A$ is a finite factor), then every tracial positive linear map $\Phi \colon \mathfrak A \to \mathfrak B(\mathfrak K)$ is of the form

Received by the editors April 13, 1981 and, in revised form, April 26, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46L05; Secondary 46L10.

Key words and phrases. C*-algebras, finite von Neumann algebras, positive linear maps, traces, Schwarz inequality, Toeplitz operators.

¹Partially supported by NSERC of Canada.

²Partially supported by an Oakland University Research Fellowship.

 $\Phi(A) = \tau(A)\Phi(I)$. Hence Φ is completely determined by a single positive operator $\Phi(I) \in \mathfrak{B}(\mathcal{K})$. To demonstrate this, we first assume $\Phi(I) = I$; then each norm-l vector $\xi \in \mathcal{K}$ induces a tracial state $(\Phi(\cdot)\xi, \xi)$ on \mathfrak{A} and

$$((\Phi(A) - \tau(A)I)\xi, \xi) = (\Phi(A)\xi, \xi) - \tau(A) = 0;$$

thus $\Phi(A) = \tau(A)I$. In general, Φ need not be unital, but we still have $\|\Phi\|I \ge \Phi(I)$. Define $\Psi: \mathfrak{A} \to \mathfrak{B}(\mathfrak{R})$ by

$$\Psi(A) = [\Phi(A) + \tau(A)(\|\Phi\|I - \Phi(I))]/\|\Phi\|.$$

Then Ψ is a unital tracial positive linear map. From the argument above, we get $\Psi(A) = \tau(A)I$, and consequently, $\Phi(A) = \tau(A)\Phi(I)$ as desired.

EXAMPLE 2. Let \Re be a *finite* von Neumann algebra and let $\Im(\Re)$ be the centre of \Re . By a result of Dixmier, there is a unique tracial positive linear map $\Phi: \Re \to \Im(\Re)$ such that $\Phi(Z) = Z$ for all $Z \in \Im(\Re)$. What really plays the central role in the structure theory is Dixmier's Approximation Theorem: For each $A \in \Re$, there is a unique $T_A \in \Im(\Re)$ such that $T_A \in \mathbb{R}$ the norm closed convex hull of $\{U^*AU: U \text{ runs through all unitary operators in <math>\Re\}$. Henceforth, the assignment $A \mapsto T_A$ defines a tracial expectation $\Phi: \Re \to \Im(\Re)$. Indeed, the properties above also characterize the finiteness of von Neumann algebras (see [6, Chapter IV, §§5 and 8] for details).

EXAMPLE 3. Let \Re be a properly infinite von Neumann algebra. Then the only tracial positive linear map $\Phi: \Re \to \Re(\Re)$ is the trivial map $\Phi(A) = 0$ for all $A \in \Re$. To see this, note that there exist isometries $S_1, S_2 \in \Re$ such that $I \ge S_1 S_1^* + S_2 S_2^*$ [6, Corollary 2, p. 298]. Hence any tracial positive linear map Φ defined on \Re must satisfy

$$\Phi(I) \geqslant \Phi(S_1 S_1^*) + \Phi(S_2 S_2^*) = \Phi(S_1^* S_1) + \Phi(S_2^* S_2) = 2\Phi(I).$$

Thus $\Phi(I) = 0$, and Φ is the trivial map.

EXAMPLE 4. Let $H = l^2$ and let $S \in \mathfrak{B}(\mathfrak{K})$ be the unilateral shift operator. We will exhibit a tracial positive linear map $\Phi \colon C^*(S) \to C^*(S)$ such that $\Phi(\Phi(A)) = \Phi(A)$ and $\Phi(A) - A$ is a compact operator for each $A \in C^*(S)$.

We recall that $T \in \mathfrak{B}(\mathfrak{K})$ is a *Toeplitz operator* iff $T = S^*TS$ (see [8, Chapter 7] for all relevant information about Toeplitz operators). It is well known that for each $A \in C^*(S)$, there is a *unique* Toeplitz operator T_A such that $T_A - A$ is compact. By other structure theorems, the assignment $A \mapsto T_A$ actually defines a tracial positive linear map $\Phi \colon C^*(S) \to C^*(S)$ with the prescribed properties.

Alternatively, it may be worthwhile to study Toeplitz operators on a Hardy space. Let T be the unit circle, let \mathcal{K} be the Hardy space $H^2(T)$, and let P be the projection from $L^2(T)$ onto \mathcal{K} . There arises naturally a positive linear map $\Theta \colon C(T) \to \mathfrak{B}(\mathcal{K})$ sending continuous functions onto "Toeplitz operators with continuous symbols"; namely, each $\phi \in C(T)$ defines the multiplication operator $M_{\phi} \in \mathfrak{B}(L^2(T))$ and thus the Toeplitz operator with symbol ϕ , $T_{\phi} = PM_{\phi}|_{\mathcal{K}} \in \mathfrak{B}(\mathcal{K})$. It is a familiar fact that the unilateral shift operator $S \in \mathfrak{B}(l^2)$ is unitarily equivalent to the Toeplitz operator with symbol z, T_z , where $z \in C(T)$ denotes the identity function $\phi(z) = z$. Thus $C^*(S)$ is identifiable with $C^*(T_z)$. Moreover, it is also well known that $C^*(T_z) = \mathfrak{K}(\mathfrak{K}) + \{\text{Toeplitz operators with continuous symbols}\}$ and there is a

natural *-isomorphism $C(\mathbf{T}) \simeq C^*(T_z)/\Re(\Re)$ assigning $z \in C(\mathbf{T})$ to $T_z + \Re(\Re)$. Henceforth, the composition of natural maps

$$C^*(T_z) \to C^*(T_z)/\Re(\Re) \simeq C(\mathbf{T}) \stackrel{\Theta}{\to} \Re(\Re)$$

becomes a tracial positive linear map $\Phi: C^*(T_*) \to \mathfrak{B}(\mathfrak{K})$ sending $C^*(T_*)$ onto {all Toeplitz operators with continuous symbols} with $\Phi \circ \Phi = \Phi$, and $\Phi(A) - A \in \mathfrak{H}(\mathfrak{K})$ for each $A \in C^*(T_*)$.

EXAMPLE 5. We may generalize the result of Example 4 to the utmost as follows. Let $\mathfrak A$ be a separable C^* -algebra and let $\mathfrak B$ be a closed two-sided ideal of $\mathfrak A$. Then $\mathfrak A/\mathfrak B$ is commutative iff there is a tracial positive linear map $\Phi \colon \mathfrak A \to \mathfrak A$ such that $\Phi(A) - A \in \mathfrak B$ and $\Phi(\Phi(A)) = \Phi(A)$ for each $A \in \mathfrak A$. To demonstrate this, we let $\Pi \colon \mathfrak A \to \mathfrak A/\mathfrak B$ be the natural quotient map. The "if" part follows immediately from the fact $\Pi \circ \Phi = \Pi$ and

$$\Pi(A_1)\Pi(A_2) = \Pi(A_1A_2) = \Pi(\Phi(A_1A_2)) = \Pi(\Phi(A_2A_1))$$

= $\Pi(A_2A_1) = \Pi(A_2)\Pi(A_1)$.

Conversely, suppose $\mathfrak{A}/\mathfrak{F}$ is commutative, then any positive linear map $\Psi \colon \mathfrak{A}/\mathfrak{F} \to \mathfrak{A}$ making the diagram

$$\frac{\Psi}{\Psi} = \frac{\mathcal{H}}{\Psi}$$

$$\frac{\mathcal{H}}{\Psi} = \frac{\mathcal{H}}{\Psi}$$

commutative (see e.g. [12, Theorem 14] for the existence of such lifting) will induce a tracial linear map $\Phi = \Psi \circ \Pi$ satisfying $\Phi \circ \Phi = \Phi$ and $\Phi(A) - A \in \mathfrak{F}$ for all $A \in \mathfrak{F}$.

Now, we proceed to establish the main result.

THEOREM. Let $\Phi: \mathfrak{A} \to \mathfrak{B}(\mathfrak{K})$ be a tracial positive linear map. Then there exist a commutative C^* -algebra C(X) and tracial positive linear maps $\Phi_1: \mathfrak{A} \to C(X), \Phi_2: C(X) \to \mathfrak{B}(\mathfrak{K})$ such that $\Phi = \Phi_2 \circ \Phi_1$. Moreover, in case Φ is unital, then we can also require Φ_1 and Φ_2 to be unital.

PROOF. Consider the second dual map $\Phi^{**}: \mathfrak{A}^{**} \to \mathfrak{B}(\mathfrak{K})^{**}$ which is σ -weakly continuous and positive. Because multiplication is separately continuous in the σ -weak topology on \mathfrak{A}^{**} , the presumed equality $\Phi(A_1A_2) = \Phi(A_2A_1)$ (with A_1 , $A_2 \in \mathfrak{A}$) persists for Φ^{**} (with A_1 , $A_2 \in \mathfrak{A}^{**}$); thus Φ^{**} is tracial. To climb down from $\mathfrak{B}(\mathfrak{K})^{**}$, we appeal to the fact that $\mathfrak{B}(\mathfrak{K})^{**}$ is the enveloping von Neumann algebra for $\mathfrak{B}(\mathfrak{K})$ (or we appeal to the "injectivity" of $\mathfrak{B}(\mathfrak{K})$); hence there exists a *-homomorphism $\Pi: \mathfrak{B}(\mathfrak{K})^{**} \to \mathfrak{B}(\mathfrak{K})$ such that $\Pi|_{\mathfrak{B}(\mathfrak{K})} =$ the identity map on $\mathfrak{B}(\mathfrak{K})$ (see [7, §12.1.5, p. 266]). Therefore, we get a tracial positive linear map $\Psi = \Pi \circ \Phi^{**}: \mathfrak{A}^{**} \to \mathfrak{B}(\mathfrak{K})$ satisfying

$$\Psi|_{\mathfrak{N}} = \Pi \circ \Phi^{**}|_{\mathfrak{N}} = \Pi \circ \Phi = \Phi.$$

Next, write $\mathfrak{A}^{**} = \mathfrak{R}_1 \oplus \mathfrak{R}_2$ where \mathfrak{R}_1 is a finite von Neumann algebra and \mathfrak{R}_2 is a properly infinite von Neumann algebra. As already shown in Example 3 above, $\Psi \mid_{\mathfrak{R}_2}$ is trivial; we may ignore \mathfrak{R}_2 completely. By Dixmier's Approximation Theorem (as

mentioned in Example 2), there is a tracial positive linear map Θ : $\Re_1 \to \Im(\Re_1)$ assigning each $A \in \Re_1$ to the unique element in the intersection of $\Im(\Re_1)$ and the norm closure of $\{\Sigma \lambda_j U_j^* A U_j: \lambda_j \ge 0, \ \Sigma \lambda_j = 1, \ U_j \text{ are unitary operators in } \Re_1\}$. Since

$$\Psi(\sum \lambda_i U_i^* A U_i) = \sum \lambda_i \Psi(U_i^* A U_i) = \sum \lambda_i \Psi(A) = \Psi(A),$$

we have $\Psi(\Theta(A)) = \Psi(A)$. Altogether, we get a commutative diagram

$$\mathfrak{A}^{**} = \mathfrak{R}_1 \oplus \mathfrak{R}_2 \xrightarrow{\Pi_1} \mathfrak{R}_1 \xrightarrow{\Theta} \mathfrak{Z}(\mathfrak{R}_1)$$

$$\downarrow \Psi \mid_{\mathfrak{Z}(\mathfrak{R}_1)}$$

$$\mathfrak{A} \xrightarrow{\Phi} \mathfrak{B}(\mathfrak{K})$$

where Π_1 is the natural projection map $A_1 \oplus A_2 \mapsto A_1$. Letting $\Phi_1 = \Theta \circ \Pi_1 \mid_{\mathfrak{A}}$ and $\Phi_2 = \Psi \mid_{\mathfrak{A}(\mathfrak{R}_1)}$, we get a tracial positive factorization $\Phi = \Phi_2 \circ \Phi_1$ as desired.

As an easy consequence of Kadison's inequality, each unital positive linear map $\Phi: \mathfrak{A} \to \mathfrak{B}$ also satisfies the inequality

$$\Phi(A^*A) + \Phi(AA^*) \ge \Phi(A^*)\Phi(A) + \Phi(A)\Phi(A^*)$$

for all $A \in \mathfrak{A}$ (see [10, Lemma 7.3]). It may be of interest to see that in case $\Phi(A^*A) = \Phi(AA^*)$ for all $A \in \mathfrak{A}$, we can really split the inequality as follows.

COROLLARY. Let $\Phi: \mathfrak{A} \to \mathfrak{B}$ be a contractive tracial positive linear map between two C^* -algebras. Then $\Phi(A^*A) \ge \Phi(A^*)\Phi(A)$ for all $A \in \mathfrak{A}$.

PROOF. From the theorem above, it follows that Φ is completely positive. It is well known that each contractive completely positive linear map has the inequality as asserted.

Finally, we pose a

QUESTION. Let $\Phi: \mathfrak{A} \to \mathfrak{B}$ be a tracial positive linear map. Does Φ admit a factorization $\mathfrak{A} \to C(X) \to \mathfrak{B}$ where C(X) is a commutative C^* -algebra and Φ_1 , Φ_2 are tracial positive linear maps?

As already revealed in the proof of Theorem, the question above has an affirmative answer if $\mathfrak A$ or $\mathfrak B$ is a W^* -algebra, or if $\mathfrak B$ is an injective C^* -algebra.

REFERENCES

- 1. W. B. Arveson, Notes on extensions of C*-algebras, Duke Math. J. 44 (1977), 329-355.
- 2. M. D. Choi, A Schwarz inequality for positive linear maps on C*-algebras, Illinois J. Math. 18 (1974), 565-574.
- 3. _____, Some assorted inequalities for positive linear maps on C*-algebras, J. Operator Theory 4 (1980), 271-285.
- 4. _____, Positive linear maps, Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R. I. (to appear).
- 5. M. D. Choi and E. G. Effros, The completely positive lifting problem for C*-algebras, Ann. of Math. (2) 104 (1976), 585-609.
 - 6. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957.
 - 7. _____, C*-algebras, North-Holland, Amsterdam, 1977.
 - 8. R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972.

- 9. L. T. Gardner, Linear maps of C*-algebras preserving the absolute value, Proc. Amer. Math. Soc. 76 (1979), 271-278.
 - 10. E. Størmer, Positive linear maps of operator algebras, Acta Math. 110 (1963), 233-278.
- 11. _____, Positive linear maps of C*-algebras, Lecture Notes in Physics, Vol. 29, Springer-Verlag, Berlin and New York, 1974, pp. 85-106.
- 12. J. Vesterstrøm, Positive linear extension operators for space of affine functions, Israel J. Math. 16 (1973), 203-211.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, CANADA M5S 1A1
DEPARTMENT OF MATHEMATICS, OAKLAND UNIVERSITY, ROCHESTER, MICHIGAN 48063