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TRACIAL POSITIVE LINEAR MAPS OF C*-ALGEBRAS

MAN-DUEN CHOI1 AND SZE-KAI TSUI2

Abstract. A positive linear map 0: 21 -• 33 between two C*-algebras is said to be

tracial if <¡?(A¡A2) = 9(A2A¡) for all A, G 21. A tracial positive linear map 21 —

Q>(%) is analyzed as the composition of a tracial positive linear map 21 — C(X)

followed by a positive linear map C(X) — ®(0C).

Tracial positive linear maps are the natural generalizations of tracial states on

C*-algebras. We invite special attention to the natural occurrence of tracial positive

linear maps in the study of finite von Neumann algebras, Toeplitz operators, as well

as others (see Examples 1-5 in the context).

In consideration of the general global structure, we are concerned with two

familiar classes of tracial positive linear maps: The first is the class of tracial positive

linear maps from a C*-algebra 31 into a commutative C*-algebra C(X)—actually,

each such map can be described as a continuous (with respect to the compact

Hausdorff space A") family of finite traces on 21. The second class consists of

positive linear maps from a commutative C*-algebra C(X) into <$>(%). The main

theorem asserts that the compositions of these two classes exhaust all; namely, each

tracial positive linear map 21 -» %(%) admits a factorization 21 -> C(X) -» <$>(%)

through a commutative C*-algebra C(X). Therefore, every tracial positive linear

map is completely positive, and consequently, each contractive tracial positive linear

map 4>: 21 -> 33 satisfies the Schwarz inequality $( A*A) > $(A*)$(A). This answers

a question raised in [4].

Throughout this paper, general C*-algebras are written in the German type 21, 33.

We denote by %(%) (resp. %(%)) for the C*-algebra of all bounded operators

(resp. all compact operators) on a Hubert space 3C. A linear map $: 21 -» 33 is said

to be tracial if $(AXA2) = <b(A2Ax) for all A, in 21. A linear map í>: 2Í -» 33 is said

to be positive if &(A) is positive for every positive A E 21. For each operator A, we

write C*(A) for the C*-algebra generated by A.

We begin with several examples to illustrate the natural occurrence of tracial

linear maps in structure theory.

Example 1. 7/21 is a unital C*-algebra with a unique tracial state r (in particular, if

21 is a finite factor), then every tracial positive linear map <I>: 21 -* %(%) is of the form

_
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9(A) = t(A)9(I). Hence $ is completely determined by a single positive operator

$(/) G <$>(%). To demonstrate this, we first assume $(/) = /; then each norm-1

vector £ G % induces a tracial state ($(•)£,£) on 21 and

((9(A) - r(A)I)è, i) = (*(A)i, è)-r(A)=0;

thus 9(A) = t(A)I. In general, 9 need not be unital, but we still have II$11/ > 9(1).

Define*: 21 -$(00 by

*(A)=[9(A) + t(A)(\\9\\I- 9(I))]/\\9\\.

Then * is a unital tracial positive linear map. From the argument above, we get

ty(A) = t(A)I, and consequently, 9(A) = j(A)9(I) as desired.

Example 2. Let 9Í be a finite von Neumann algebra and let 3(9t ) be the centre of

SR. By a result of Dixmier, there is a unique tracial positive linear map 9: 9r -» 3(9? )

such that 9(Z)-Z for all Z G 3(9Î). What really plays the central role in the

structure theory is Dixmier's Approximation Theorem: For each A E 9t, there is a

unique TA E S(^) such that TA E the norm closed convex hull of [U*AU: U runs

through all unitary operators in 9r}. Henceforth, the assignment A\-+TA defines a

tracial expectation 9: 3t -» 3(3^)- Indeed, the properties above also characterize the

finiteness of von Neumann algebras (see [6, Chapter IV, §§5 and 8] for details).

Example 3. Let SR be a properly infinite von Neumann algebra. Then the only

tracial positive linear map 9: 9Í -» <$>(%) is the trivial map 9(A) = 0 for all A G 9Í.

To see this, note that there exist isometries S,, S2 G 3î such that / > 5,5* + 5252*

[6, Corollary 2, p. 298]. Hence any tracial positive linear map 9 defined on 9î must

satisfy

$(/) > $(5,5*) + $(5252*) = $(5*5,) + $(52*52) - 2$(/).

Thus $(/ ) = 0, and $ is the trivial map.

Example 4. Let H = I2 and let 5 G <3>(%) be the unilateral shift operator. We

will exhibit a tracial positive linear map 9: C*(S) -* C*(5) such that 9(9(A)) =

9(A) and 9(A) — A is a compact operator for each A E C*(S).

We recall that T E <$>(%) is a Toeplitz operator iff T = S*TS (see [8, Chapter 7]

for all relevant information about Toeplitz operators). It is well known that for each

A G C*(5), there is a unique Toeplitz operator TA such that TA — A is compact. By

other structure theorems, the assignment A \-* TA actually defines a tracial positive

linear map $: C*(S) — C*(5) with the prescribed properties.

Alternatively, it may be worthwhile to study Toeplitz operators on a Hardy space.

Let T be the unit circle, let % be the Hardy space //2(T),and let P be the projection

from L2(T) onto %. There arises naturally a positive linear map 6: C(T) — ®(9C)

sending continuous functions onto "Toeplitz operators with continuous symbols";

namely, each 4> G C(T) defines the multiplication operator M^ E °Jj(L2(T)) and thus

the Toeplitz operator with symbol d>, 7^ = PM^ |x G <S>(%). It is a familiar fact that

the unilateral shift operator 5 G ®(/2) is unitarily equivalent to the Toeplitz

operator with symbol z, T:, where z G C(T) denotes the identity function <b(z) = z.

Thus C*(5) is identifiable with C*(T:). Moreover, it is also well known that

C*(T) = %(%)+ {Toeplitz operators with continuous symbols} and there is a
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natural »-isomorphism C(T) = C*(7;)/fK'(0O assigning z G C(T) to T + %(%).

Henceforth, the composition of natural maps

C*(T) - C*(T.)/%(%) * C(T) **(dc)

becomes a tracial positive linear map $: C*(T) — $(0C) sending C*(T.) onto {all

Toeplitz operators with continuous symbols) with $ ° $ = $, and 9(A) — A E

Oi'(OC) for each A E C*(T).

Example 5. We may generalize the result of Example 4 to the utmost as follows.

Let 21 be a separable C*-algebra and let $ be a closed two-sided ideal of 21. Then

21/v, is commutative iff there is a tracial positive linear map 9: 21 — 21 such that

9(A) — A G 0, and 9(9(A)) — 9(A) for each A G 21. To demonstrate this, we let

II: 21 — 31/3 be the natural quotient map. The "if" part follows immediately from

the fact n o $ = n and

n.(4,)nU2) = n(AxA2) = U(9(A.A2)) = l\(9(A2A,))

= n( ^2^4, ) = n(/i2)n(/i,).

Conversely, suppose 21/J is commutative, then any positive linear map <V: 21/o — 21

making the diagram

,*'     in

21/3 = 21/3

commutative (see e.g. [12, Theorem 14] for the existence of such lifting) will induce a

tracial linear map $ = f »11 satisfying $ o 9 = 9 and $( A ) — A E 3  for all

A G3-

Now. we proceed to establish the main result.

Theorem. Let 9: 21 -» $(0O be a tracial positive linear map. Then there exist a

commutative C*-algebra C(X) and tracial positive linear maps $,: 21 -> C(X), $2:

C(X) -» $(0t) such that $ = $2 ° $,. Moreover, in case 9 is unital, then we can also

require 9, and 92 to be unital.

Proof. Consider the second dual map $**: 21** — $(00** which is o-weakly

continuous and positive. Because multiplication is separately continuous in the

a-weak topology on 21**, the presumed equality 9(AXA2) = 9(A2A]) (with Ax, A2

G 21) persists for $** (with Ax, A2 E 21**); thus $** is tracial. To climb down from

y5(0C)**, we appeal to the fact that 9>(%)** is the enveloping von Neumann algebra

for <S(0O (or w« appeal to the "injectivity" of 9>(%)); hence there exists a

»-homomorphism n: °J5(0C)** -» $(00 such that n |ó¿(3t) = the identity map on

$(0C) (see [7, §12.1.5, p. 266]). Therefore, we get a tracial positive linear map

t = n« $**: 21** - <$>(%) satisfying

¥|a = n°$**i3, = n°$ = $.

Next, write 21** = S, © SR2 where ÎR, is a finite von Neumann algebra and SR2 is a

properly infinite von Neumann algebra. As already shown in Example 3 above, ¥ \m

is trivial; we may ignore 9r2 completely. By Dixmier's Approximation Theorem (as
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mentioned in Example 2), there is a tracial positive linear map 0: 31, -» 3(9i|)

assigning each A G 9Í, to the unique element in the intersection of 3(9^i) and the

norm closure of [IXjUfAUf. Ay > 0, 2Xy = 1, If. are unitary operators in 9î,}.

Since

*(2X7l/*^C/) = IWiUfAU)) = IX^(A) = *(A),

we have ^(@(A)) = ^(A). Altogether, we get a commutative diagram

n,      e
21** =5R,©9î2-9i1- 3(51.)

where II, is the natural projection map Ax © A2 \-> Ax. Letting $, = 8 ° II, |fl and

$2 = ^ |^(SH ., we get a tracial positive factorization $ = $2 ° $, as desired.    ■

As an easy consequence of Kadison's inequality, each unital positive linear map

$: 21 -* 33 also satisfies the inequality

9(A*A) + 9(AA*) 3* 9(A*)9(A) + 9(A)9(A*)

for all A E 21 (see [10, Lemma 7.3]). It may be of interest to see that in case

9(A*A) — 9(AA*) for all A E 21, we can really split the inequality as follows.

Corollary. Let 9: 21 -» 23 be a contractive tracial positive linear map between two

C*-aigebras. Then 9(A*A) > 9(A*)9(A) for all A G 21.

Proof. From the theorem above, it follows that $ is completely positive. It is well

known that each contractive completely positive linear map has the inequality as

asserted.    ■

Finally, we pose a

Question. Let $: 21 — 33 be a tracial positive linear map. Does $ admit a
*1 *2

factorization 2Í -» C(X) -*33 where C(X) is a commutative C*-algebra and $,, $2

are tracial positive linear maps?

As already revealed in the proof of Theorem, the question above has an affirma-

tive answer if 21 or 33 is a W^-algebra, or if 33 is an injective C*-algebra.
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