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STOKES' THEOREM AND PARABOLICITY

OF RIEMANNIAN MANIFOLDS

MOSES GLASNER

Abstract. A noneompact Riemannian «-manifold is parabolic if and only if Stokes'

theorem is valid for every square integrable (n — l)-form with integrable derivative.

For a compact orientable «-manifold R Stokes' theorem implies that

(1) [da = 0

for every differentiate (n — l)-form a on R. In case R is an open relatively compact

subset of a Riemannian «-manifold Bochner [1] established (1) for (n — l)-forms a

vanishing "in average" at the boundary of R with da integrable. Gaffney [4]

extended (1) in a different direction by showing that it is valid when R is a complete

Riemannian manifold and both a, da are integrable. Subsequently Yau [9] estab-

lished a weak form of (1) without any integrability assumptions on da. Recently

Karp [7] showed that (1) holds for complete Riemannian manifolds satisfying certain

volume growth conditions and a satisfying certain integrability conditions but da

merely nonnegative outside a compact set. Results of this sort have been labeled

Stokes' theorem for noneompact manifolds.

The requirement that R be complete excludes from consideration many parabolic

Riemannian manifolds (cf. [8]). A compact Riemannian manifold with countably

many points deleted is an example of an incomplete parabolic manifold and is

included in Bochner's result. Since parabolic Riemannian manifolds resemble com-

pact ones from many points of view, it is natural to try to find conditions on a which

imply (1) for parabolic R. The purpose of this note is to show that if R is a

noneompact Riemannian «-manifold, then (1) holds for every square integrable

(« — l)-form a with da integrable precisely when R is parabolic.

We begin by fixing terminologies. Let fibea noneompact Riemannian «-manifold

and {/v*}^ an exhaustion of R by relatively compact regions with smooth boundaries.

Consider {n^Jf a sequence of continuous piecewise differentiable functions on R

with wk\R0— 1, wk\ Rk\R0 harmonic, wk \ R \ Rk = 0. Obviously, wk =£ wA +, < 1

and therefore w = limn^ exists on R. Moreover, w is harmonic on R\dRQ and

superharmonic on R.
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For suitable functions <p, \p on R the mixed Dirichlet integral is given by DR(<p, \p)

= JRd<p A *d\p and the Dirichlet integral of <p by DR(q>) = DR(<p, <¡d). We claim that

{wk} converges to w in the Dirichlet seminorm as well. To this end note that by

Green's formula DR(w +k — wk, wp+k ) = 0 for every pair of positive integers p, k.

ThusOsi L>R(wp + k — wk) = DR(wk) - DR(wp M ). This implies that d = \imk DR(wk)

exists. Thus letting p î +00 and applying Fatou's lemma gives DR( w — wk ) <

DR( wk ) — d, which establishes the claim.

The manifold R is called parabolic if w is identically 1. In view of the above, the

parabolicity of R is equivalent to d — 0. Several other characterizations of parabolic-

ity are used, for example, the nonexistence of a global Green's function, the

nonexistence of nonconstant negative subharmonic functions or the validity of the

boundary maximum principle (cf. [5]).

Let T"~l(R) denote the space of square integrable (« — l)-forms on R, i.e.

fRa A *a < +00 for a E T"-](R). Also set 0" '(/?) = {a E Yn,(R): fR\da\<

+00), where | da | = | * da | *1.

Theorem. The Riemannian n-manifold R is parabolic if and only if (1) holds for

even'a E @"'l(R).

Assume that R is parabolic and let a E Q"~ '(/?). Then the sequence {wk} has the

properties

(2) wk 11    on R

and

(3) DR(wk) 10.

By (2) and the Lebesgue dominated convergence theorem we have

(4) lim  /      w,da = f     da.
k   Jr,r0 J*,r0

For an arbitrary positive integer k we have

(5) f     wkda= (     d(wka) + f     dwk A a.

Using the usual Stokes' theorem we see that }RyR d(wka) = — fèR a = — JR da

and thus by (5)

(6) J   da + {      wkda = I      dwk A a.
JR„ JR\Rn JR^Rn

By the Schwarz inequality the absolute value of the right side of (6) is bounded by

(DR(wk)jR a A * a)1/2. Consequently, (3) implies that the limit of the left side is 0 as

k Î +00. This together with (4) establish the necessity of (1).

Conversely, assume that (1) holds for every a E @"~](R). Fix a compact neigh-

borhood N of dR0. Since w is superharmonic on R and w \ R \ 3Ä0 is harmonic, we

may choose a sequence {^} of C2 superharmonic functions on R such that

lim Sj = w on R and s, agrees with w on R \ N. (The usual proof of this approxima-

tion by C2 superharmonic functions given in [6] can be adapted to Riemannian
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manifolds by using the mean value property established by Feller [3].) Since

dr(sj) < +°° and d*dSj = 0 on R\N, we have * ds] E<d"~\R). Thus jR d* ds) = 0.

In view of * d * ds-j< 0 on R we see that sy is harmonic on R and consequently w is

harmonic on R. Since w achieves its maximum, it is constant. This means that R is

parabolic.

From this theorem, or from the other characterizations of parabolicity mentioned

above, it is obvious that the notion of parabolicity is independent of the choice of

the exhaustion {Rk}. A slight modification of the proof gives the following

Corollary. A noneompact Riemannian n-manifold R is parabolic if and only if (\)

holds for every a E rn~\R) such that there exists a compact set Ka with * da s* 0 on

R\Ka.

Indeed, if R is parabolic and we are given such an a, then we may choose the

exhaustion {/\*}^ with Ka C R0. Then (2) is valid and since * da > 0 on R\R0, the

monotone convergence theorem implies that (4) holds. The remainder of the proof is

the same as that of the theorem.

On a parabolic Riemannian manifold every Dirichlet finite harmonic function is

constant (cf. [5]). Using this we obtain the

Corollary. A noneompact Riemannian manifold R is parabolic if and only if every

C2 Dirichlet finite subharmonic function on R is constant.

According to a result of Cheng and Yau [2] a complete Riemannian manifold with

second order volume growth is parabolic. Combining this with our first corollary

gives a special case of Karp's [7] Corollary 1.
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