PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 87, Number |, January 1983

STOKES’ THEOREM AND PARABOLICITY
OF RIEMANNIAN MANIFOLDS

MOSES GLASNER

ABSTRACT. A noncompact Riemannian n-manifold is parabolic if and only if Stokes’
theorem is valid for every square integrable (n — 1)-form with integrable derivative.

For a compact orientable n-manifold R Stokes’ theorem implies that

(1) ./;da=0

for every differentiable (n — 1)-form a on R. In case R is an open relatively compact
subset of a Riemannian n-manifold Bochner [1] established (1) for (n — 1)-forms «
vanishing “in average” at the boundary of R with da integrable. Gaffney [4]
extended (1) in a different direction by showing that it is valid when R is a complete
Riemannian manifold and both «, da are integrable. Subsequently Yau [9] estab-
lished a weak form of (1) without any integrability assumptions on da. Recently
Karp [7] showed that (1) holds for complete Riemannian manifolds satisfying certain
volume growth conditions and a satisfying certain integrability conditions but de
merely nonnegative outside a compact set. Results of this sort have been labeled
Stokes’ theorem for noncompact manifolds.

The requirement that R be complete excludes from consideration many parabolic
Riemannian manifolds (cf. [8]). A compact Riemannian manifold with countably
many points deleted is an example of an incomplete parabolic manifold and is
included in Bochner’s result. Since parabolic Riemannian manifolds resemble com-
pact ones from many points of view, it is natural to try to find conditions on a which
imply (1) for parabolic R. The purpose of this note is to show that if R is a
noncompact Riemannian n-manifold, then (1) holds for every square integrable
(n — 1)-form a with da integrable precisely when R is parabolic.

We begin by fixing terminologies. Let R be a noncompact Riemannian n-manifold
and {R,)¥ an exhaustion of R by relatively compact regions with smooth boundaries.
Consider {w,)T a sequence of continuous piecewise differentiable functions on R
with w, | Ry = 1, w, | R,\ R, harmonic, w, | R\ R, = 0. Obviously, w, < w,,, <1
and therefore w = limw, exists on R. Moreover, w is harmonic on R\dR,, and
superharmonic on R.
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For suitable functions ¢, ¢ on R the mixed Dirichlet integral is given by Dg(@, ¥)
= [rdo N =dy and the Dirichlet integral of ¢ by Dg(@) = Dg(@. ¢). We claim that
{w,} converges to w in the Dirichlet seminorm as well. To this end note that by
Green’s formula Dg(w,; — wy,w,,,) = 0 for every pair of positive integers p, k.
Thus 0 < Dgp(w, ., — wy) = Dg(wy) — Dg(w, ). This implies that d = lim; Dg(w;)
exists. Thus letting p t +oc and applying Fatou’s lemma gives Dg(w — w,) <
Dg(w,) — d. which establishes the claim.

The manifold R is called parabolic if w is identically 1. In view of the above, the
' parabolicity of R is equivalent to d = 0. Several other characterizations of parabolic-
ity are used, for example, the nonexistence of a global Green's function, the
nonexistence of nonconstant negative subharmonic functions or the validity of the
boundary maximum principle (cf. [5]).

Let T""'(R) denote the space of square integrable (n — 1)-forms on R, i.e.
Jra A xa < +oo for a € T""(R). Also set ©""'(R) = {a ET" (R): [p|da|<
+o0}, where |da |=|*da| 1.

THEOREM. The Riemannian n-manifold R is parabolic if and only if (1) holds for
every a € @" " '(R).

Assume that R is parabolic and let a € ©”7'(R). Then the sequence {w, } has the
properties

(2) w,11 onR
and
(3) Dp(w,) 0.
By (2) and the Lebesgue dominated convergence theorem we have
(4) lim wda = da.
kYRR, R\R,

For an arbitrary positive integer k we have

5 w,da = d(w,a) + dw, N\ a.
” [ = i)+ [ o
Using the usual Stokes’ theorem we see that [z g d(w,@) = — [z, @ = — [ da
and thus by (5)
(6 da + wda = dw, N a.
) ‘/R(, R\R, g ";Q\RO * .

By the Schwarz inequality the absolute value of the right side of (6) is bounded by
(Dg(w,)fr @ \ * @)'/2. Consequently, (3) implies that the limit of the left side is 0 as
k 1 +oo. This together with (4) establish the necessity of (1).

Conversely, assume that (1) holds for every @« € "~ '(R). Fix a compact neigh-
borhood N of dR,,. Since w is superharmonic on R and w| R\ 3R, is harmonic, we
may choose a sequence {5} of C 2 superharmonic functions on R such that
lims, = won R and s, agrees with w on R\ N. (The usual proof of this approxima-
tion by C? superharmonic functions given in [6] can be adapted to Riemannian
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manifolds by using the mean value property established by Feller [3].) Since
Dg(s;) < +o0 and d+ds; = O on R\ N, we have +ds, € ©"~'(R). Thus [ d*ds, = 0.
In view of *dxds; < 0 on R we see that s, is harmonic on R and consequently w is
harmonic on R. Since w achieves its maximum, it is constant. This means that R is
parabolic.

From this theorem, or from the other characterizations of parabolicity mentioned
above, it is obvious that the notion of parabolicity is independent of the choice of
the exhaustion { R, }. A slight modification of the proof gives the following

COROLLARY. 4 noncompact Riemannian n-manifold R is parabolic if and only if (1)
holds for every a € T"~'(R) such that there exists a compact set K, with »da = 0 on
R\K,.

Indeed, if R is parabolic and we are given such an a, then we may choose the
exhaustion { R}’ with K, C R,. Then (2) is valid and since *da = 0 on R\ R, the
monotone convergence theorem implies that (4) holds. The remainder of the proof is
the same as that of the theorem.

On a parabolic Riemannian manifold every Dirichlet finite harmonic function is
constant (cf. [5]). Using this we obtain the

COROLLARY. A noncompact Riemannian manifold R is parabolic if and only if every
C? Dirichlet finite subharmonic function on R is constant.

According to a result of Cheng and Yau [2] a complete Riemannian manifold with
second order volume growth is parabolic. Combining this with our first corollary
gives a special case of Karp’s [7] Corollary 1.
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