GEOMETRIC REALIZATION OF A FINITE SUBGROUP OF $\pi_0 \varepsilon(M)$. II

KYUNG BAI LEE

ABSTRACT. Let M be a closed aspherical manifold with a virtually 2-step nilpotent fundamental group. Then any finite group G of homotopy classes of self-homotopy equivalences of M can be realized as an effective group of self-homeomorphisms of M if and only if there exists a group extension E of π by G realizing $G \to \operatorname{Out} \pi_1 M$ so that $C_E(\pi)$, the centralizer of π in E, is torsion-free. If this is the case, the action (G, M) is equivalent to an affine action (G, M') on a complete affinely flat manifold homeomorphic to M. This generalizes the same result for flat Riemannian manifolds.

Let M be a closed aspherical manifold, $\varepsilon(M)$ the group of homotopy equivalences of M into itself. Any $f \in \varepsilon(M)$ induces an isomorphism $f_* \colon \pi_1(M, x) \to \pi_1(M, f(x))$. By choosing a path ω from x to f(x), we get an automorphism f_*^ω of $\pi_1(M, x)$, mapping $[\tau]$ to $[\omega^{-1}(f \circ \tau)\omega]$ for any loop τ based at x. A different choice of τ alters f_*^ω by an inner automorphism of $\pi_1(M, x)$. Therefore, we obtain a natural surjective homomorphism $\Psi \colon \varepsilon(M) \to \operatorname{Out} \pi_1 M$, where $\operatorname{Out} \pi_1 M = \operatorname{Aut} \pi_1 M / \operatorname{Inn} \pi_1 M$, the group of automorphism classes. Of course, $\Psi(f) = [f_*^\omega]$ for any ω as above. Since we are considering only $\pi_1(M, x)$, we need not specify the base point, so we write $\pi_1 M$ instead of $\pi_1(M, x)$. It is well known that for a closed aspherical manifold M, the kernel of Ψ is $\varepsilon_0(M)$, the group of self-homotopy equivalences of M homotopic to the identity. This implies that Ψ factors through $\pi_0 \varepsilon(M)$ so that

$$\varepsilon(M)$$

$$\swarrow \qquad \qquad \searrow \Psi$$

$$\pi_0 \varepsilon(M) \qquad \stackrel{\Psi_*}{=} \qquad \operatorname{Out}(\pi_1 M)$$

commutes. A pair of groups G, π together with a homomorphism ϕ : $G \to \operatorname{Out} \pi$ is called an *abstract kernel*, and is denoted by (G, π, ϕ) . Therefore, an injective abstract kernel (G, π_1, M, ϕ) for a closed aspherical manifold M is really a group of homotopy classes of self-homotopy equivalences of M.

Received by the editors November 12, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57S17, 57S30; Secondary 55P20, 53C30, 57S15, 55R55.

Key words and phrases. Geometric realization, infranilmanifold, crystallographic group, virtually nilpotent group, homotopy class of self-homotopy equivalences, affine diffeomorphism, complete affinely flat manifold.

176 K. B. LEE

Restricting Ψ to H(M), the group of self-homeomorphisms of M, we have a homomorphism $\Psi \colon H(M) \to \operatorname{Out} \pi_1 M$. This is surjective since M is a closed aspherical manifold. A geometric realization of an abstract kernel $\phi \colon G \to \operatorname{Out} \pi_1 M$ is a homomorphism $\hat{\phi} \colon G \to H(M)$ so that $\Psi \circ \hat{\phi} = \phi$. In this paper we will require $\hat{\phi}$ to be injective so that the action of G on M is effective. Therefore, when the abstract kernel is injective, the problem reduces to the problem of geometric realization of a group of homotopy classes of self-homotopy equivalences as a group of self-homeomorphisms.

Suppose we have a G-action. Let $\mathcal{L}(G, M)$ be the group of all liftings of elements of G to \tilde{M} , the universal covering of M. Then

$$1 \to \pi_1 M \to \mathcal{L}(G, M) \to G \to 1$$

is exact and admissible (i.e., $C_{\mathfrak{L}(G,M)}(\pi_1M)$), the centralizer of π_1M in $\mathfrak{L}(G,M)$, is torsion-free). See [LR1, Lemma 1]. Therefore, in order that an abstract kernel (G,π_1M,ϕ) for a closed aspherical manifold M be realized geometrically, it is necessary that the abstract kernel have an extension which is admissible. In certain cases, this condition is also sufficient when G is finite. For example, it is true for closed flat Riemannian manifolds (see [LR1; ZZ] when ϕ is injective), for certain Seifert fibered spaces [R], and for Seifert relatives of compact flat Riemannian manifolds [L2]. In this paper we will verify that this is also the case for closed aspherical manifolds with virtually 2-step nilpotent fundamental groups. In a subsequent joint paper with Frank Raymond we shall generalize this to more general Seifert fibered spaces.

In [L3] the following is proved.

FACT 1 [L3]. A closed aspherical manifold M of dimension $\neq 3$ or 4 with a virtually 2-step nilpotent fundamental group is homeomorphic to a complete affinely flat manifold M'.

We now state our main theorem.

THEOREM. Let M^m be a closed aspherical manifold ($m \neq 3, 4$) with a virtually 2-step nilpotent fundamental group. A finite abstract kernel ϕ : $G \to \operatorname{Out} \pi_1 M$ can be realized as an effective group of self-homeomorphisms of M if and only if it admits an admissible extension. In fact, (G, M) is equivalent to an affine action (G, M') on a closed affinely flat manifold M' homeomorphic to M.

PROOF OF THE THEOREM. We will need the following facts.

FACT 2 [FH]. Let N^m ($m \neq 3, 4$) be a closed connected infranilmanifold and M^n be an aspherical manifold with $\pi_1(M^n)$ isomorphic to $\pi_1(N^m)$. Then M^m and N^m are homeomorphic.

FACT 3 [L2]. Let Q be a virtually free abelian group (of rank n) which has a representation $\phi \times \rho$: $Q \to GL(k, \mathbb{Z}) \times E(n)$ such that image(ϕ) is finite, image(ρ) is a crystallographic group (of rank n). Then for any extension E of \mathbb{Z}^k by Q

realizing ϕ , there exists a homomorphism $f: E \to L \circ Q_1 \subset A(k+n)$ so that

commutes. Moreover, f is injective if and only if $E_K = \text{kernel}((\phi \times \rho) \circ p)$ is torsion-free.

In the above, E(n) denotes the group of rigid motions on \mathbb{R}^n , A(k+n) the group of affine motions on \mathbb{R}^{k+n} , $L=L(\mathbb{R}^n,\mathbb{R}^k)$ is the group of all affine maps of \mathbb{R}^n into \mathbb{R}^k and $Q_1=\operatorname{image}(\phi\times\rho)$. A discrete subgroup P of E(n) with \mathbb{R}^n/P compact is called a crystallographic group of rank n.

Suppose the abstract kernel $\phi\colon G\to \operatorname{Out}\pi\ (\pi=\pi_1M)$ admits an admissible extension E so that $1\to\pi\to E\to G\to 1$ is exact and $C_E(\pi)$ is torsion-free. Let N be the nilradical of π , that is, N is the maximal nilpotent normal subgroup of π . Then N is characteristic in π . Since E is also virtually 2-step nilpotent, N is an extension of a torsion-free nilpotent subgroup by a finite group. In addition, N is torsion-free. This implies that N itself is 2-step nilpotent. The center z(N) of N is normal in E. Since E/z(N) contains a free abelian subgroup N/z(N), it is virtually free abelian. Certainly the natural homomorphism $\phi\colon E/z(N)\to\operatorname{Aut}(z(N))=\operatorname{GL}(k,\mathbf{Z})\ (k=\operatorname{rank}\ of\ z(N))$ has a finite image. There exists a homomorphism $\rho\colon E/z(N)\to E(n)$ (n=m-k) with crystallographic group as image. See [LR1] for the proof. Clearly kernel (ρ) is finite. Let E_K be the preimage of kernel $(\phi\times\rho)$ under the natural homomorphism $E\to E/z(N)$. We shall prove that E_K is torsion-free.

First we show $E_K \subset C_E(N)$. Suppose $x \in E_K$. Then $[x, N] \subset z(N)$, [x, z(N)] = 1 and $x^t \in z(N)$ for some t > 0. Here, $[x, y] = xyx^{-1}y^{-1}$. Let X be the subgroup of E generated by x. The first two conditions imply that $X \cdot N$ is again 2-step nilpotent. Since $x^t \in z(N)$, $[x^t, N] = 1$. $[x^t, \alpha] = [x, \alpha]^t$ for all $\alpha \in N$ since $X \cdot N$ is 2-step nilpotent. Note that $[x, \alpha] \in N \subset \pi$. Therefore $[x, \alpha]^t = [x^t, \alpha] = 1$ with $[x, \alpha] \in \pi$. Since π is torsion free, $[x, \alpha] = 1$. That is, $x \in C_E(N)$.

Next we show that $\operatorname{Tor}(C_E(N)) = \operatorname{Tor}(C_E(\pi))$. Suppose θ is an automorphism of π such that $\theta \mid_N$ is the identity. We claim that $\theta(\sigma) \cdot \sigma^{-1} \in C_E(N)$ for all $\sigma \in \pi$. For any $\alpha \in N$,

$$\sigma \cdot \alpha \cdot \sigma^{-1} = \theta(\sigma \cdot \alpha \cdot \sigma^{-1}) = \theta(\sigma) \cdot \theta(\alpha) \cdot \theta(\sigma)^{-1} = \theta(\sigma) \cdot \alpha \cdot \theta(\sigma)^{-1}.$$

This implies that $\theta(\sigma) \cdot \sigma^{-1} \in C_{\pi}(N)$, since $C_{\pi}(N)$ is characteristic in π . Now let $c \in C_E(N)$ be an element of finite order, say, c' = 1 for some r > 0. We apply the results above to the automorphism $\theta = \text{conjugation}$ by c. Certainly θ induces the identity on N, for $c \in C_E(N)$. Therefore $[c, \sigma] = \theta(\sigma) \cdot \sigma^{-1} \in C_{\pi}(N)$. We claim that $C_{\pi}(N) = z(N)$. Since $C_{\pi}(N)$ is a torison-free central extension of z(N) by a finite group, it is again free abelian of rank k = rank z(N) (see [LR1, Fact 2]). Therefore, $C_{\pi}(N) \cdot N$ is a nilpotent normal subgroup of π containing N. However, N is the nilradical of π , which implies $C_{\pi}(N) \subset N$. For any $\sigma \in \pi$,

$$[c',\sigma] = [c,\sigma]^{c'-1} \cdots [c,\sigma]^{c^2} \cdot [c,\sigma]^c \cdot [c,\sigma]$$

178 K. B. LEE

where $x^y = yxy^{-1}$. Since $[x, \sigma] \in N$ and $c \in C_E(N)$, $c[c, \sigma]c^{-1} = [c, \sigma]$. Therefore, $1 = [c', \sigma] = [c, \sigma]'$. As N is torsion-free $[c, \sigma] = 1$, i.e. $c \in C_E(\pi)$. Consequently $Tor(E_K) \subset Tor(C_E(N)) = Tor(C_E(\pi))$ and hence, E_K is torsion-free (since so is $C_E(\pi)$).

Thus we have $\phi: E/z(N) \to \operatorname{GL}(k, Z)$ with a finite image, $\rho: E/z(N) \to E(n)$ with a finite kernel and with a crystallographic group (of rank n) as image. Furthermore, we have just proved that E_K = preimage of kernel($\phi \times \rho$) under $E \to E/z(N)$ is torsion-free. Applying Fact 3, we obtain an embedding f of E into A(m). Via f, π acts on \mathbb{R}^m as a covering transformation yielding $M' = \mathbb{R}^m/f(\pi)$, a compact complete affinely flat manifold. Furthermore, $G = E/\pi$ acts on M' as a group of affine diffeomorphisms. By Fact 2, M and M' are homeomorphic. Then the G-action on M' can be pulled back to one on M via this homeomorphism. Q.E.D.

EXAMPLE. A finite subgroup G of Out $\pi_1 M$ cannot be realized as a group of affine actions on M in general. Let $\pi = \langle t_1, t_2, t_3' \rangle$ be the subgroup of A(3), $t_1 = (I, e_1)$, $t_2 = (I, e_2)$ and $t_3' = (T, e_3)$ with $T = I + E_{21}$. Consider the subgroup \mathbb{Z}_2 of Out π generated by the automorphism $t_1 \to t_1^{-1}$, $t_2 \to t_3'$, $t_3' \to t_2$. This $\mathbb{Z}_2 \subset \text{Out } \pi$ can be realized as a group of homeomorphisms but not as a group of affine maps. For if the latter were true, then the derivatives of t_2 and t_3' would be similar 3×3 matrices. But by construction these derivations are I and T respectively, and these matrices are definitely not similar.

REFERENCES

- [CR] P. E. Conner and F. Raymond, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bull. Amer. Math. Soc. 83 (1977), 36-87.
- **]FH]** F. T. Farrell and W. C. Hsiang, Topological characterization of flat and almost flat Riemannian manifolds M^n ($n \neq 3.4$) (to appear).
 - [L1] K. B. Lee, Geometric realization of $\pi_0 \epsilon(M)$, Proc. Amer. Math. Soc. 86 (1982), 353–357.
 - [L2] _____, Seifert relatives of flat Riemannian manifolds, Ph. D. Thesis, University of Michigan, 1981.
- [L3] _____, Aspherical manifolds with virtually 3-step nilpotent fundamental group, Amer. J. Math. (to appear).
- [LR1] K. B. Lee and F. Raymond, Topological, affine and isometric actions on flat Riemannian manifolds, J. Differential Geometry 16 (1981), 255-269.
- [R] F. Raymond, The Nielsen theorem for Seifert fibered space over locally symmetric spaces, J. Korean Math. Soc. 16 (1979), 87-93.
- [Zi] B. Zimmermann, Über Gruppen von Homöomorphismen Seifertscher Faserräume und flacher Mannigfaltigkeiten, Manuscripta Math. 30 (1980), 361-373.
- [ZZ] H. Zieschang and B. Zimmermann, Endliche Gruppen von Abbildungsklassen gefaserter 3-Mannig-faltigkeiten, Math. Ann. 240 (1979), 41-52.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907