PRINCIPAL HOMOGENEOUS SPACES OVER HENSEL RINGS

ROSARIO STRANOI

ABSTRACT. We prove that if (A, \underline{a}) is a Hensel couple and G is an affine, smooth group scheme over A then $H^1_{el}(A, G) = H^1_{el}(A/\underline{a}, G/\underline{a}G)$.

Introduction. In this paper we prove the following

THEOREM 1. Let (A, \underline{a}) be a Hensel couple and let G be an affine, smooth group scheme over A, i.e. a functor G: (A-algebras) \rightarrow (groups) which is represented by a smooth A-algebra (also denoted G). Then the canonical map $H_{et}^1(A, G) \rightarrow H_{et}^1(A/a, G/aG)$ is bijective.

This theorem generalizes a result known when A is local and \underline{a} is the maximal ideal (see [4, Theorem 11.7]).

The injectivity of the above map was proved in [8]. We also use the main result of [3].

Recall that $H_{el}^1(A, G)$ classifies the isomorphism classes of principal homogeneous spaces in the étale topology over A under G (PHS for short, "torseurs" in French terminology).

In \S 1 and 2 we give some preliminaries. In \S 3 we prove Theorem 1 in the case when A is an AIC ring, and we conclude the proof in \S 4, where some corollaries are also given.

As for the notion of Hensel couple, see [2]; all the notions about group schemes and cohomology can be found in [1 and 6].

1. In this section we give the definition and some properties of absolutely integrally closed rings that we will use later (see also [3, 2.B]).

A ring A is said to be absolutely integrally closed (AIC for short) if it satisfies one of the following equivalent conditions:

- (a) every monic polynomial in A[X] has a root in A;
- (b) every monic polynomial in A[X] splits into a product of linear factors.

PROPOSITION 1. The following properties hold:

- (1) Every ring of fractions and every quotient of an AIC ring is AIC.
- (2) A local AIC ring is strict henselian.
- (3) If A is an AIC ring and $\underline{a} \subset A$ is an ideal, then the henselization ${}^{h}(A, \underline{a})$ is AIC.

Received by the editors January 20, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 13J15, 14F20; Secondary 14L15.

¹This paper was done within the Group for Algebra and Geometry (GNSAGA) of the Italian National Research Council (CNR).

PROOF. (1) and (2) are easy. (3) By [2, Theorem 6.1], ${}^h(A, \underline{a})$ is a direct limit of N-extensions of (A, \underline{a}) ; hence we reduce to the case of $B = A[x]_{1+(a,x)A[x]}$ where A[x] = A[X]/(f) and f is an N-polynomial, i.e. $f = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$ with $a_0 \in \underline{a}$, a_1 invertible modulo \underline{a} . We write $f = (X - b_1) \cdots (X - b_n)$, $b_i \in A$, and show that $B = \prod_{i=1}^n A_{1+(\underline{a},b_i)}$. In fact for every $i = 1,\ldots,n$ if we put $f = (X - b_i)g_i(X)$, we have $f'(X) = g_i(X) + (X - b_i)g_i'(X)$; but the image f'(x) of f'(X) in B is invertible since $f'(x) \in 1 + (\underline{a}, x)A[x]$.

Given any ring A we can construct a ring A^* as follows: let $\{f_i\}_{i\in I}$ be the set of monic polynomials in A[X] and put $A_i = A[X]/(f_i)$; define $A_1 = \bigotimes_{i\in I} A_i$ and, inductively, $A_n = (A_{n-1})_1$; finally let $A^* = \lim_{i \in I} A_i$.

It is easy to see that the ring A^* is an AIC ring, faithfully flat and integral over A, and it is the direct limit of A-algebras which are free with finite rank as A-modules.

2. In this section we deduce from the main result of [3] a method of descent for modules and algebras.

Let (A, \underline{a}) be an H-couple. For every $f \in A$ we denote by hA_f the henselization of A_f with respect to $\underline{a}A_f$. Let $f_1, \ldots, f_n \in A$ such that $(f_1, \ldots, f_n) = A$. In [3, Theorem 1.11] we proved that if M_i are hA_f -modules with isomorphisms

$$\phi_{ij} \colon M_i \otimes {}^{h}A_{f,f_i} \cong M_j \otimes {}^{h}A_{f_if_i}$$

and the ϕ_{ij} 's satisfy the cocycle condition $\phi_{ij} \circ \phi_{jk} = \phi_{ik}$ on ${}^hA_{f,f,fk}$, then there is a unique A-module M such that $M \otimes_A {}^hA_{f_i} \simeq M_i$, $i = 1, \ldots, n$. This easily particular we apply this "henselian descent" to the following case. Let G be an affine group scheme of finite presentation over A. Recall that a principal homogeneous space for the étale topology over A under G is a G-space, i.e. an A-algebra H together with a G-action (see [1, II, 1.3.1]), such that $H \otimes_A S \simeq G \otimes_A S$ as $G \otimes_A S$ -spaces over S for some faithfully flat étale homomorphism $A \to S$.

Now suppose we have PHS's H_i over hA_f and isomorphisms

$$\phi_{ij}$$
: $H_i \otimes_{h_{A_{fi}}} {}^h A_{f_i f_i} \simeq H_j \otimes_{h_{A_{fi}}} {}^h A_{f_i f_i}$

as $G \otimes_A {}^h A_{f,f_j}$ -spaces over ${}^h A_{f,f_j}$, such that the ϕ_{ij} 's satisfy the cocycle condition over ${}^h A_{f,f_j,f_k}$; then there is a unique PHS H over A such that $H \otimes_A {}^h A_{f_i} \simeq H_i$ as $G \otimes_A {}^h A_{f_i}$ -spaces over ${}^h A_{f_i}$. In fact from the above remark we can descend the algebras H_i and the $G \otimes_A {}^h A_{f_i}$ -action and obtain a G-space H over A; moreover H is of finite presentation over A since the H_i 's are of finite presentation over ${}^h A_{f_i}$; and, since $H \otimes_A S_i \simeq G \otimes_A S_i$ as $G \otimes_A S_i$ -spaces over S_i for faithfully flat étale ${}^h A_{f_i}$ -algebras S_i , we easily see that there exists a faithfully flat étale A-algebra S such that $H \otimes_A S \simeq G \otimes_A S$ as $G \otimes_A S$ -spaces over S. Thus H is a PHS over A under G.

3. In this section we prove Theorem 1 in the case when A is an AIC ring. First of all we recall some known facts about cohomology.

PROPOSITION 2. Let G be an affine smooth group scheme over A; then

- (a) $H^1_{et}(A, G) \simeq H^1_{fp}(A, G)$, where fp denotes the faithfully flat finite presentation topology, and
- (b) if (A, \underline{a}) is an H-couple, the canonical map $H^1_{et}(A, G) \to H^1_{et}(A/\underline{a}, G/\underline{a}G)$ is injective.

PROOF. (a) See [4, Corollary 11.9].

(b) See [8, I, Theorem 2 and II, Proposition 2].

THEOREM 2. Let (A, \underline{a}) be an H-couple and let G be an affine smooth group scheme over A. Suppose A is an AIC ring. Then

$$H^1_{et}(A,G) \simeq H^1_{et}(A/a,G/aG).$$

PROOF. We have to prove only surjectivity. Let \overline{H} be a PHS over $\overline{A} = A/\underline{a}$, and let $I \subset A$ be the set of elements $f \in A$ such that there exists a PHS H(f) over hA_f for which $H(f)/\underline{a}H(f) \simeq \overline{H_f}$ as $G_f/\underline{a}G_f$ spaces. We want to prove that I = A. Let $\underline{p} \in \operatorname{Spec} A$; since $\overline{H} \otimes_A A_{\underline{p}}$ is trivial by Proposition 1(2), there exists $f \notin \underline{p}$ such that $\overline{H_f}$ is trivial; hence $\overline{H_f}$ can be lifted to $G \otimes_A {}^hA_f$. It remains to prove that \overline{I} is an ideal of A. Let $f, g \in I$; replacing A with hA_s , s = f + g, we can suppose (f, g) = A. So we have PHS's H(f), H(g) over hA_f , hA_g , respectively, such that $H(f)/\underline{a}H(f) \simeq \overline{H_f}$, $H(g)/aH(g) \simeq \overline{H_g}$; if we consider $H(f) \otimes_{{}^hA_f} {}^hA_{fg}$ and $H(g) \otimes_{{}^hA_g} {}^hA_{fg}$ they are isomorphic PHS's over ${}^hA_{fg}$ because of Proposition 2(b). Then by the remark in §2 there exists a PHS H over A such that $H/aH \simeq \overline{H}$.

4. In this section we conclude the proof of Theorem 1 and deduce some corollaries.

PROOF OF THEOREM 1. We have to prove the surjectivity of the map $H^1_{\text{et}}(A,G) \to H^1_{\text{et}}(\overline{A},\overline{G})$, where $\overline{A} = A/\underline{a}$, $\overline{G} = G/\underline{a}G$. Let \overline{H} be a PHS over \overline{A} under \overline{G} and consider the ring A^* defined in §1; $\overline{H} \otimes_{\overline{A}} A^*$ is a PHS over $A^*/\underline{a}A^*$ under $G \otimes_A A^*/\underline{a}A^*$, and hence by Theorem 2 it can be lifted to a PHS H^* over A^* such that $H^* \otimes_A \overline{A} \simeq \overline{H} \otimes_{\overline{A}} A^*$. Since A^* is the limit of A-algebras which are free with finite rank as A-modules, we can find such an algebra A' and a PHS A' over A' such that $A' \otimes_A \overline{A} \simeq \overline{H} \otimes_A \overline{A}A'$.

Now we want to descend H' to a PHS H over A such that $H/\underline{a}H \simeq \overline{H}$. In order to do this consider the two extensions H_1 , H_2 of H' to $A' \otimes_A A'$ and the three extensions H_{12} , H_{23} , H_{13} of H' to $A' \otimes_A A' \otimes_A A'$. Let us consider the three functors G_1 , G_2 , G_3 : (A-algebras) \rightarrow (sets) defined as follows: for every A-algebra B,

$$G_{1}(B) = \operatorname{Isom}(H' \otimes_{A} B, H' \otimes_{A} B) \qquad \text{as } G \otimes_{A} A' \otimes_{A} B\text{-spaces over } A' \otimes_{A} B,$$

$$G_{2}(B) = \operatorname{Isom}(H_{1} \otimes_{A} B, H_{2} \otimes_{A} B) \qquad \text{as } G \otimes_{A} A' \otimes_{A} A \otimes_{A} B\text{-spaces over } A' \otimes_{A} B,$$

$$G_{3}(B) = \operatorname{Isom}(H_{23} \otimes_{A} B, H_{12} \otimes_{A} B) \qquad \text{as } G \otimes_{A} A' \otimes_{A} A' \otimes_{A} A' \otimes_{A} B\text{-spaces over } A' \otimes_{A} A' \otimes_{A} A' \otimes_{A} A' \otimes_{A} B\text{-spaces over } A' \otimes_{A} A' \otimes_{A} A' \otimes_{A} A' \otimes_{A} B.$$

First we prove that the G_i 's are representable by smooth A-algebras. In fact we consider the functor G'_1 : (A'-algebras) \rightarrow (sets) defined by

$$G'_1(C) = \text{Isom}(H' \otimes_{A'} C, H' \otimes_{A'} C)$$

as $G \otimes_{\mathcal{A}} C$ -spaces over C, for every A'-algebra C; we have $G_1 = \prod_{A'/A} G'_1$, i.e. G_1 is the Weil restriction of G'_1 from A' to A (see [1, I, 1.6.6]). Hence by [1, I, 4.4.8] in order to prove that G_1 is representable by a smooth A-algebra it is enough to prove that G'_1 is representable by a smooth A'-algebra.

Since H' is split by a faithfully flat A'-algebra S, the extended functor $G'_1 \otimes_{A'} S$: (S-algebras) \rightarrow (sets) is isomorphic to $G \otimes_A S$: in fact for every S-algebra D we have

$$(G'_{1} \otimes_{A'} S)(D) = \operatorname{Isom}_{G \otimes_{A} D \operatorname{-spaces over } D}(H' \otimes_{A'} D, H' \otimes_{A'} D)$$

$$\simeq \operatorname{Isom}_{G \otimes_{A} D \operatorname{-spaces over } D}(G \otimes_{A} D, G \otimes_{A} D) = (G \otimes_{A} S)(D).$$

Since $G \otimes_A S$ is representable by a smooth S-algebra, by [8, I, Proposition 1], G'_1 is representable by a smooth A'-algebra. In the same way we prove that G_2 , G_3 are representable by smooth A-algebras.

Now we consider the functor K: (A-algebras) \rightarrow (sets) defined as the kernel

$$K(B) = \operatorname{Ker}(G_2(B) \underset{\theta_1 \cdot \theta_3}{\overset{\theta_2}{\Rightarrow}} G_3(B))$$

for every A-algebra B, where θ_i are the maps induced by the homomorphisms ε_i : $A' \otimes_A A' \to A' \otimes_A A' \otimes_A A'$; by [8, I, Proposition 2], K is representable by an A-algebra of finite presentation.

If we prove that K is smooth, by [5, Theorem 1.8] we have that the map $K(A) \to K(\overline{A})$ is surjective, and hence we can lift any descent datum in $K(\overline{A})$ which corresponds to the \overline{G} -space \overline{H} to a descent datum in K(A) and obtain a G-space H over A which is a PHS over A by Proposition 2 (a) since it is split by a faithfully flat A-algebra of finite presentation $A \to A' \to S$. It remains to prove that K is smooth, i.e. for every A-algebra B and nilpotent ideal $I \subset B$ the map $K(B) \to K(B/I)$ is surjective. In fact let $\tilde{\alpha} \in K(B/I)$: $\tilde{\alpha}$ defines a $G \otimes_A B/I$ -space \tilde{H} over B/I which is a PHS since it is split by a faithfully flat B/I-algebra of finite presentation $B/I \to A' \otimes_A B/I \to S \otimes_A B/I$. From the bijection

$$H^1_{\mathrm{et}}(B,G\otimes_{A}B)\simeq H^1_{\mathrm{et}}(B/I,G\otimes_{A}B/I)$$

(see [8, I, Theorem 4 and II, Proposition 2]) it follows that \tilde{H} can be lifted to a PHS over B. From this, using the fact that G_1 is smooth, we can see easily that there is an $\alpha \in K(B)$ whose image in K(B/I) is $\tilde{\alpha}$.

As an application of Theorem 1 we deduce some properties of H-couples, some of them already known (see [5 and 7]).

COROLLARY 1. Let (A, a) be an H-couple, and

- (a) let $P_n(A)$ be the set of isomorphism classes of projective A-modules with rank n, then $P_n(A) \simeq P_n(A/a)$; in particular $Pic(A) \simeq Pic(A/a)$;
- (b) let $Az_n(A)$ be the set of isomorphism classes of Azumaya A-algebras with rank n^2 ; then $Az_n(A) \simeq Az_n(A/\underline{a})$;
- (c) let $\operatorname{Et}_n(A)$ be the set of isomorphism classes of étale finite A-algebras with rank n; then $\operatorname{Et}_n(A) \simeq \operatorname{Et}_n(A/a)$;
- (d) let Q_{2n} be the set of isomorphism classes of quadratic A-modules of mark $(A^n \times A^n, q)$, $q(x, y) = x_1 y_1 + \cdots + x_n y_n$ (see [1, III, 5.2.3]); then $Q_{2n}(A) \simeq Q_{2n}(A/a)$.

PROOF. In fact all the sets considered above are of the form $H^1_{et}(A, G)$ with G an affine smooth group scheme over A, precisely:

(a) $G = Gl_n$, the general linear group of order n;

- (b) $G = Pgl_n$, the general projective linear group of order n;
- (c) $G = S_n$, the symmetric group of order n;
- (d) $G = D_{2n}$, the orthogonal group of order 2n.

COROLLARY 2. Let (A, \underline{a}) be an H-couple, with A-algebra over an algebraically closed field k, and let G be an affine algebraic group over k. Then

$$H^1_{el}(A, G \otimes_k A) \simeq H^1_{el}(A/a, G \otimes_k A/a).$$

PROOF. In fact G is smooth.

COROLLARY 3. Let (A, \underline{a}) be an H-couple and suppose that n is a unit in A. Let μ_n be the group of n-roots of unity, i.e. for every A-algebra B, $\mu_n(B) = \{b \in B \mid b^n = 1\}$. Then

$$H^1_{\text{et}}(A, \mu_n) \simeq H^1_{\text{et}}(A/\underline{a}, \mu_n \otimes_A A/\underline{a}).$$

PROOF. In the above hypothesis μ_n is smooth.

REFERENCES

- 1. M. Demazure and P. Gabriel, Groupes algébriques, North-Holland, Amsterdam, 1970.
- 2. S. Greco, Henselization of a ring with respect to an ideal, Trans. Amer. Math. Soc. 144 (1969), 43-65.
- 3. S. Greco and R. Strano, Quasi-coherent sheaves over affine Hensel schemes, Trans. Amer. Math. Soc. 268 (1981), 445-465.
- 4. A. Grothendieck, Le groupe de Brauer. III: Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968.
 - 5. L. Gruson, Une propriété des couples henséliennes, Colloq. Algèbre Comm., Exp. 10, Rennes, 1972.
 - 6. J. S. Milne, Etale cohomology, Math. Notes Ser., Princeton Univ. Press, Princeton, N. J., 1980.
 - 7. R. Strano, Azumaya algebras over Hensel rings, Pacific J. Math. 61 (1975), 295-303.
 - 8. _____, Cohomology of an affine group scheme over a Hensel ring, J. Algebra 47 (1977), 138-153.

SEMINARIO MATEMATICO, 195125 CATANIA, ITALY