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PRINCIPAL HOMOGENEOUS SPACES OVER HENSEL RINGS

ROSARIO STRANO1

Abstract. We prove that if (A, a) is a Hensel couple and G is an affine, smooth

group scheme over A then H^t(A, G) — H¿t(A/a, G/qG).

Introduction. In this paper we prove the following

Theorem 1. Let (A, a) be a Hensel couple and let G be an affine, smooth group

scheme over A, i.e. a functor G: (A-algebras) -» (groups) which is represented by a

smooth A-algebra (also denoted G). Then the canonical map H^(A, G) -»

He\(A/q, G/aG) is bijective.

This theorem generalizes a result known when A is local and a is the maximal

ideal (see [4, Theorem 11.7]).

The injectivity of the above map was proved in [8]. We also use the main result of

[3].
Recall that H¿t(A, G) classifies the isomorphism classes of principal homogeneous

spaces in the étale topology over A under G (PHS for short, " torseurs" in French

terminology).

In §§1 and 2 we give some preliminaries. In §3 we prove Theorem 1 in the case

when A is an AIC ring, and we conclude the proof in §4, where some corollaries are

also given.

As for the notion of Hensel couple, see [2]; all the notions about group schemes

and cohomology can be found in [1 and 6].

1. In this section we give the definition and some properties of absolutely

integrally closed rings that we will use later (see also [3,2.B]).

A ring A is said to be absolutely integrally closed (AIC for short) if it satisfies one

of the following equivalent conditions:

(a) every monic polynomial in A[X] has a root in A;

(b) every monic polynomial in A[ X] splits into a product of linear factors.

Proposition 1. The following properties hold:

(1) Every ring of fractions and every quotient of an AIC ring is AIC.

(2) A local AIC ring is strict henselian.

(3) If A is an AIC ring and a E A is an ideal, then the henselization h(A, a) is AIC.

Received by the editors lanuary 20, 1982.

1980 Mathematics Subject Classification. Primary 13115, I4F20; Secondary I4L15.

1 This paper was done within the Group for Algebra and Geometry (GNSAGA) of the Italian National

Research Council (CNR).

208

©1983 American Mathematical Society

0002-9939/82/0000-0562/$ 02.00



PRINCIPAL HOMOGENEOUS SPACES OVER HENSEL RINGS 209

Proof. (1) and (2) are easy. (3) By [2, Theorem 6.1], h(A, a) is a direct limit of

A'-extensions of (A, a); hence we reduce to the case of B = /4[jc]1+(a x)A[x] where

A[x\ = A[X]/(f) and/is an ^-polynomial, i.e. /= X" + an_xX"~x + •• • + axX

+ a0 with a0 E a, ax invertible modulo a. We write /= (A — bt) • ■ ■ (X — b„),

b¡EA, and show that B = U"=xAx+(a h). In fact for every /= l,...,n if we put

/= ( A - b,)gi(X), we have f'(X) = g,(X) + (X - b,)g;(X); but the image f'(x)

off'(X) in B is invertible since f'(x) E \ + (a, x)A[x].

Given any ring A we can construct a ring A* as follows: let {/},e/ be the set of

monic polynomials in A[X] and put A,. = A[X]/(f); define Ax — <8je[A,. and,

inductively, An = (/!„_,),; finally let A* = lim An.

It is easy to see that the ring A* is an AIC ring, faithfully flat and integral over A,

and it is the direct limit of ^4-algebras which are free with finite rank as ,4-modules.

2. In this section we deduce from the main result of [3] a method of descent for

modules and algebras.

Let (A, a) be an //-couple. For every/ E A we denote by hAf the henselization of

Aj with respect to aAf. Let /,,-..,/„ E A such that ( /i ,...,/„) = A. In [3, Theorem

1.11] we proved that if M, are hAf-modules with isomorphisms

and the d>,. .'s satisfy the cocycle condition <p,y ° <bjk = <b,k on hAfj^, then there is a

unique A -module M such that M 9A hAf =Afj,i= 1,... ,n. This easily particular we

apply this "henselian descent" to the following case. Let G be an affine group

scheme of finite presentation over A. Recall that a principal homogeneous space for

the étale topology over A under G is a G-space, i.e. an y4-algebra H together with a

G-action (see [1, II, 1.3.1]), such that H 9A S - G 9A S as G 9A 5-spaces over 5 for

some faithfully flat étale homomorphism A -» S.

Now suppose we have PHS's H¡ over hAf and isomorphisms

as G 9A \4^-spaces over hAfj, such that the <p,;'s satisfy the cocycle condition over

hAf/fk; then there is a unique PHS H over A such that H 9A hA{¡ = A) as G ®,4 A^/-

spaces over aj4¿. In fact from the above remark we can descend the algebras H¡ and

the G 9A hAf -action and obtain a G-space H over ^4; moreover // is of finite

presentation over A since the H/s are of finite presentation over hA¡<; and, since

H 9A S, - G 9A S, as G 9A S,-spaces over S, for faithfully flat étale hAf -algebras S„

we easily see that there exists a faithfully flat étale A -algebra S such that H 9A S -

G 9A S as G 9A S-spaces over S. Thus H is a PHS over A under G.

3. In this section we prove Theorem 1 in the case when A is an AIC ring. First of

all we recall some known facts about cohomology.

Proposition 2. Let G be an affine smooth group scheme over A ; then

(a) H]X(A, G) — H¡p(A, G), where fp denotes the faithfully flat finite presentation

topology, and

(b) if (A, a) is an H-couple, the canonical map H¿.(A, G) — H^A/a, G/aG) is

infective.
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Proof, (a) See [4, Corollary 11.9].

(b) See [8,1, Theorem 2 and II, Proposition 2].

Theorem 2. Let (A, a) be an H-couple and let G be an affine smooth group scheme

over A. Suppose A is an AIC ring. Then

Hl,(A,G)^Hll(A/q,G/aG).

Proof. We have to prove only surjectivity. Let H be a PHS over A = A/a, and let

/ C A be the set of elements/E A such that there exists a PHS H(f) over hAf for

which H(f)/aH(f)^Hf as G^/aGy-spaces. We want to prove that 1 — A. Let

H E Spec.4; since H 9A Ap is trivial by Proposition 1(2), there exists/ G p such that

Hj is trivial; hence Hf can he lifted to G 9A hAf. It remains to prove that / is an ideal

of A. Let /, g E I; replacing A with hAs, s = / + g, we can suppose (/, g) = A. So

we have PHS's //(_/ ),H(g) over hAf, hAg, respectively, such that H( f )/aH( f ) = Hf,

H(g)/aH(g)^Hg; if we consider H(f)9UfhAfg and H(g) 9>AfhAfg they are

isomorphic PHS's over hAfg because of Proposition 2(b). Then by the remark in §2

there exists a PHS H over A such that H/aH » H.

4. In this section we conclude the proof of Theorem 1 and deduce some

corollaries.

Proof of Theorem 1. We have to prove the surjectivity of the map H ¿.(A, G) —

H¿t(A, G), where A = A/a, G = G/aG. Let H be a PHS over A under G and

consider the ring A* defined in §1; H 9A A* is a PHS over A*/aA* under

G 9A A*/oA* and hence by Theorem 2 it can be lifted to a PHS H* over A* such

that H* 9A A - H 9A A*. Since A* is the limit of yl-algebras which are free with

finite rank as ^-modules, we can find such an algebra A' and a PHS H' over A' such

that//' 9A Ä ^ H9AA'.

Now we want to descend //' to a PHS H over A such that H/aH = H. In order to

do this consider the two extensions //,, H2 of //' to A' 9A A' and the three extensions

//|2, H2J, //,3 of //' to A' 9A A' 9A A'. Let us consider the three functors G,, G2, G3:

(/I-algebras) — (sets) defined as follows: for every ,4-algebra B,

G,(5) = Isom(//' 9A B, H' 9A B)       as G ®¿ A' 9A 5-spaces over/l' ®,, B,

G2(B) = Isom(//, ®„ B, H2 9A B)       as G ®¿ /I' «^ /I' 9A 5-spaces

over/I' 84,4' ®¿2í,

G3(B) = Isom(//23 «^ 5, Hx2 9A B)    as G ®4 A' 9A A' 9A A' 9A 5-spaces

over/I' 9AA' 9A A' 9AB.

First we prove that the G,'s are representable by smooth A -algebras. In fact we

consider the functor G\: (^'-algebras) -• (sets) defined by

G\(C) = Isom(//' 9A.C, H' 9A.C)

as G 9A C-spaces over C, for every yF-algebra C; we have G, = \[A-/A G\, i.e. G, is

the Weil restriction of G\ from A' to A (see [1,1,1.6.6]). Hence by [1,1,4.4.8] in order

to prove that G, is representable by a smooth /1-algebra it is enough to prove that G\

is representable by a smooth A '-algebra.
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Since //' is split by a faithfully flat ^'-algebra S, the extended functor G', 9AS:

(S-algebras) -» (sets) is isomorphic to G 9A S: in fact for every S-algebra D we have

(G; 9A.S)(D) = lsomGiSAD.spaixsm„D(H' 9AD, //' 9A,D)

=• Isomc^0.spacesoverD(G ^ /), G9AD) = (G ®4 S)(Z>).

Since G 9AS is representable by a smooth S-algebra, by [8,1, Proposition 1], G\ is

representable by a smooth ^'-algebra. In the same way we prove that G2, G3 are

representable by smooth A -algebras.

Now we consider the functor K: (A-algebras) -» (sets) defined as the kernel

K(B) = Ker(G2(5)  4  G3(B))
». «i

for every /I-algebra 5, where 0, are the maps induced by the homomorphisms e¡:

A' 9A A' -» A' 9A A' 9A A'; by [8,1, Proposition 2], K is representable by an A-alge-

bra of finite presentation.

If we prove that K is smooth, by [5, Theorem 1.8] we have that the map

K(A) -> K(A) is surjective, and hence we can lift any descent datum in K(A) which

corresponds to the G-space H to a descent datum in K(A) and obtain a G-space H

over A which is a PHS over A by Proposition 2 (a) since it is split by a faithfully flat

A -algebra of finite presentation A ~* A' -* S. It remains to prove that K is smooth,

i.e. for every A -algebra B and nilpotent ideal I E B the map K(B) -» K(B/I) is

surjective. In fact let á E K(B/I): á defines a G 9A B/I-space H over B/I which is

a PHS since it is split by a faithfully flat 5/Z-algebra of finite presentation

B/I - A' 9A B/I - S9A B/I. From the bijection

H¡.(B, G9AB)^ H¡.(B/I, G 9A B/I)

(see [8,1, Theorem 4 and II, Proposition 2]) it follows that H can be lifted to a PHS

over B. From this, using the fact that G, is smooth, we can see easily that there is an

a E K(B) whose image in K(B/I) is ä.

As an application of Theorem 1 we deduce some properties of //-couples, some of

them already known (see [5 and 7]).

Corollary 1. Let (A, a) be an H-couple, and

(a) let Pn(A) be the set of isomorphism classes of project ive A-modules with rank n,

then Pn(A) = Pn(A/a); in particular ?ic(A) - Vic(A/q);

(b) let Azn(A) be the set of isomorphism classes of Azumaya A-algebras with rank

n2; then Az„(A) - Azn(A/q);

(c) let Et „(/I) be the set of isomorphism classes of étale finite A-algebras with rank n;

then Ein(A) a Etn(A/q);

(d) let Q2n be the set of isomorphism classes of quadratic A-modules of mark

(A"XA",q), q(x,y) = X]yx+---+xnyn (see [1,111,5.2.3]); then Q2n(A) -

Q2n(A/a).

Proof. In fact all the sets considered above are of the form H^A, G) with G an

affine smooth group scheme over A, precisely:

(a) G = Gl„, the general linear group of order n;
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(b) G = Pgl„, the general projective linear group of order n;

(c) G — Sn, the symmetric group of order n;

(d) G — D2n, the orthogonal group of order In.

Corollary 2. Let (A, a) be an H-couple, with A-algebra over an algebraically

closed field k, and let G be an affine algebraic group over k. Then

H&A, G9kA)^ Hl,(A/q, G 9k A/a).

Proof. In fact G is smooth.

Corollary 3. Let (A, a) be an H-couple and suppose that n is a unit in A. Let Pn

be the group of n-roots of unity, i.e. for every A-algebra B, p„(B) — {b E B \ b" = 1}.

Then

H&A, p„) - H\,(A/q, Pn 9A A/q).

Proof. In the above hypothesis p„ is smooth.
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