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ROUGH AND STRONGLY ROUGH NORMS ON BANACH SPACES

G. GODINI

Abstract. We give equivalent conditions for a norm on a Banach space X to be

rough using the sets A(x) defined for each x G Xby A(x) = {/£ X* \f(x) = Hxll,

11/11 = 1}. This enables us to obtain unitary characterizations for rough and strongly

rough norms.

Let X be a real Banach space, and for x, y E X, let r(x,y) denote the one sided

Gateaux differential of II ■ II at x in the direction^, i.e.,

t(x, y) = lim r'(||x + ty\\ - ||x||).
1-0*

For x0 £ X and r > 0 we denote Bx(x0, r) = {x £ X\ \\x — x0|| < r), Bx =

Bx(0,1) and Sx= {x E X\ ||x|| = 1}. For each x £ X let us denote ^(x) = Ax(x)

= {fESx.\f(x)= Hxll), where X* is the dual space of X. For fESx„ let

A~Xf)= {x ESx\f(x)= 1} and denote by Dom(/T') the set {f E Sx. \A'\f)¥=

0).

By the Ascoli-Mazur Theorem [4, p. 447], for x, y E X we have

(1) r{x,y) = m*x{f{y)\fEA(x)}.

Definition 1 [8, 9, p. 120]. A norm of a Banach space X is said to be rough if

there is an e > 0 such that for every x E X and 8 > 0, there exist x,, x2, u £ X,

llx, — x\\ < 8, i — 1,2, « £ Sx, with t(x2, u) — t(xx, u) ï* e.

There are several known characterizations of a Banach space with a rough norm

(see e.g., [1, 7, 9, 11, 13]). We add to these characterizations some new ones. In what

follows we shall use the following results of [7, Proposition 1, (i) «* (iv), Proposition

1', (ii) « (iv)], some of them being implicitly contained in [9, p. 122].

Proposition 1 [7, p. 336]. The following properties of a given norm of X are

equivalent:

(i) The norm of X (the dual norm of X*) is not rough.

(ii) For every e > 0 there is an x £ Sx (f E Sx.) such that whenever fn, gn E Sx,

lim /„(x) = lim g„(x) = 1 (x„, y„ £ S^lim f(xn) = lim f(y„) = 1), then

limsupll/n-g„ll <£      (limsupl|x„-.yn|| < e).

For a bounded set A C A', we denote the diameter of A by diam A — diam x A =

sup{ II a, — a2\\\ax, a2E A).
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Theorem 1. The following properties of a given norm of X are equivalent:

(i) II • II is rough.

(ii) There is an e > 0 such that for every x £ Sx and 8 > 0, there exists y £ Sx,

\\y - x|| < 8 with diamM(x) U A(y)) > e.

Proof, (i) => (ii). Since || ■ || is rough, choose e > 0 given by Definition 1, and let

e' = e/2, x E Sx and 0 < 8 < 2. By (i) for this x E Sx and 8/2, there exist

x,, x2, u £ X, ||x, — x|| < 8/2, i=l,2, a£ Sx, with t(x2, u) — t(x,, u) > e. By

(1) there exist/ £ A(x¡), i = 1,2, such that t(x,, u) = f(u), i = 1,2. Then

e«T(x2, «).-t(x„«)=/2(«) -/,(«)« 11/, -f2II.

Since x, * 0, let>>, = x,/||x,||, / = 1,2. Let/ E /l(x). Then 2e' < 117, - f2 II « 11/, -
/ II + II / — f2 II and so we can suppose (interchanging the indices if necessary) that

«'** II/i _/H < diam(/l(x) U ^(j,)), i.e., we have (ii).

(ii) =» (i). Let e > 0 be given by (ii) and let e' — e/2 and x E S^. By (ii), for each «

there exists yn E Sx, \\yn - x\\ < \/n with diam(/l(x) U A(yn)) > e. Let /,, gn E

A(x) U >l(.v„) such that 11/, - g„\\ > 3e/4 for each «. Clearly, lim /„(x) = Iim g„(x)

= 1 and lim suplí /„ — g„ II > e', whence by Proposition 1, the norm is rough.

Remark 1. Using Theorem 1, it is easy to show that the norm of X is rough if and

only if there is an e > 0 such that for every x E Sx,fE A(x) and 8 > 0, there exists

yESx,\\y-x\\<8 with supg£/4( v) || / - g || > e.

Corollary 1. The following properties of a given norm of X are equivalent:

(i) II • II is rough.

(ii) There is an e > 0 such that for every x £ Sx and 8 > 0, there exist xx, x2, u £ Sx,

II X, — x|| < 5, 2 =   1, 2, SHC« ¿«¿2/ T(X2, 12) + t(xx, -u) > £.

(iii) The same as (ii) but with xx — x2 or one of xx, x2 equals x.

Proof, (i) => (ii). This follows by Definition 1, using the well-known fact [4] that

-t(xx,u)*¿t(xx,-u).

(ii) =» (i). Using formula (1) we obtain that (ii) implies condition (ii) of Theorem 1,

whence the norm is rough.

(i) => (iii). By Theorem l(i) = (ii), there is an e' > 0 such that for every x E Sx and

8 > 0, there exists y E Sx, Il y - x|| < 8 with dmm(A(x) U /l(.v)) s* e'. Let f, g E

A(x) U A(y) such that II/— gII > e'/2. Then there is an element u £ Sx with

(/- g)(u) >t'/2. If fEA(x) andgE^(v) (similarly if g E A(x) and/ E A(y)),

then by (1) we obtain e'/2 ^f(u) + g(-u) < t(x, 12) + r(y, -u). In a similar way, if

/, g E /l(x) or /, g £ /1(>0 we obtain respectively t(x, 12) + t(x, -u) > e'/2 or

r(y, «) + t(>î, -k) > e'/2. Therefore we have (iii) e.g., for e = e'/2.

Since (iii) =» (ii) is obvious, this completes the proof of the corollary.

Using a slight modification of [6, Lemma 2] we have

Lemma 1. Let x, y, u E Sx. If t(x, 12) + t(y, -12) = t > 0, /«e« i«ere /s ¿2 u E 5V

such that t(x, ü) > e/4 and r(y,-v) > (e/4) - llx - >'ll/2.
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Proof.  By (1)  there are fEA(x), gEA(y) such  that (f-g)(u) = e.   Let

w - u - (/+ g)(u)x/2. ThenO < ||w>|| < 2. Lett; = w/IM|. We have

l       \>fi   \ l    ¡ (/-g)(») \ -      £      » £

Since g E /!(>•), we haveg(x) > 1 — llx — v II and so

#(-«) +-ô->?U) >-ï-H JC "/II.

Hence

TÍ^.-ü) >g(-0) - —     g(-M) + -1-g(x,

3s
,  £        „              ,.\  .    £         llx -y|

Ix-.vll)^-—(f
An immediate consequence of Corollary l(i) «(iii). Lemma 1, formula (1) and

Theorem 1 is

Corollary 2. The following properties of a given norm of X are equivalent:

(i) II • II is rough.

(ii) There is an e > 0 such that for every x £ Sx and 8 > 0 there exist y, u £ Sx,

\\y — x\\ < 8, such that either r(y,u)>£ and r(y, -u) > e or t(x,u)>£ and

r(y,-u)> e — ô.

We recall [10, p. 976] that a normed linear space E has property (VT ) if each closed

bounded convex set K C E is the intersection of the closed balls containing it. We

need the following result of [10, Lemma 4.1].

Lemma 2 [10, p. 979]. Suppose that the normed linear space E has property (?5 ). //

/ E SE. and 0 < £ < 1, there exist 8(e) > 0 and x E SE such that y E SE D Bf:(x,8)

implies A(y) C BE,(f, e).

Corollary 3. If X has property (?T ), i«e« ?«e «ww o/ X ù not rough.

Proof. Use Theorem 1 and Lemma 2.

Though Lemma 2 property characterizes property (c'~ ) [5, p. 114], the converse to

Corollary 3 is not always true. Indeed, it is known [12, p. 178] that if a Banach space

X is reflexive, then X is an Asplund space (i.e., every continuous convex function

defined on an open convex subset of X is Frechet differentiable on a dense Gs subset

of its domain); by [7, p. 344] X is an Asplund space if and only if X does not admit

any equivalent rough norm. In particular, any norm on a 2-dimensional Banach

space is not rough. On the other hand, by [10, p. 981] a 2-dimensional Banach space

X has property (?T ) if and only if X is smooth.

Due to the terminology, the following result seems surprising. There is a Banach

space X whose norm is both rough and smooth.

Example. In [10, p. 981] a norm for m = (/')* (the space of bounded sequences

y = f^}) was defined by \\y\\ = sup | v, | +(ly2/2')l/2 and for x = {x,} £ /',

||x|| = sup{2x,^, \y = {>>,} E m, \\y\\ = I}. Then X = (/', II • II) is a smooth space
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[10, p. 981]. Let e < ¡\ and x £ Sx. It was shown in [10, p. 982] that for any y E Sx.

such that (x, y) = 1, there exists a sequence {yk} C X* such that (x, yk) -» 1,

||>>* II - 1 and \\yk —y\\>{. (Note that in the first case in [10, p. 982] it was not

used that y, — 0 but only that \yt \< \ for i > «.) Now, for fk, gk E Sx. defined by

fk ~ y<8k =.V/i/ll/*ll, wehavelim fk(x) = limgA.(x) = 1 and lim sup II fk - gk\\ > e,

whence by Proposition 1, the norm on A" is rough.

We remark also that there is a Banach space having a nonrough norm with no

point of Gateaux differentiability [7, p. 341].

The characterization given in Theorem 1, helps us to introduce the following

concept dual to rough norm.

Definition 2. A norm of a Banach space Ais said to have property (dr) if there is

an £ > 0 such that for every / £ Dom(/T') and 8 > 0, there exists g £ Dom(A'i),

\\g — f\\ < 8 with diam(A'](f) U A'\g)) > e. When the Banach space is a dual

space X* and in the above definition / and g are chosen to be w*-continuous, then

the dual norm of X* is said to have property (w* dr).

To prove the next result we need the following extension of Bishop and Phelps

theorem given in [2, Theorem 11.

Theorem 2 [2, p. 181]. Suppose x E Sx,f E Sx.and\f(x) - 1 |< e2/2 (0 < £ < {).

Then there exist y E Sx and g £ A( y ) such that || / — g || «£ e ¿2«¿7 II x — y II < £ + e2.

Theorem 3. Let X be a Banach space. Then:

(i) The norm of X has property (dr) if and only if the dual norm of X* is rough.

(ii) The norm of X is rough if and only if the dual norm of X* has property (w* dr).

Proof. Suppose the norm of X has property (dr) and let e > 0 be given by

Definition 2. Let / £ Sx. and Ö > 0. By Bishop and Phelps theorem there exists

fx EDom(A']) such that II /, - / II < 8/2. By property (dr) there exists f2 E

Dom(A'1), II /, -/,|| <8/2 with diam(A'\fx) UA'\f2))>e. Let x, y EA'\fx)
U A~\f2) such that llx — _y II > e/2. Regarding A" as a subspace of A"** we have for

F E A(f) that e/2 < ||x — _y|| < ||x — F II + Il F — y\\, and so we can suppose that

llx - F || »e/4. Since 11/ -/|| < 8, i = 1,2 and x EA(f) for some / = 1 or 2, it

follows that diam(/l(/) U A(f)) s* e/4, whence by Theorem 1, the dual norm of X*

is rough.

Conversely, suppose the dual norm of X* is rough and let 0 < e < 2 be given by

Proposition 1(h). Let/E Dom(A~]) and 0 < 8 < e/4. By Proposition 1, there exist

x„, yn E Sx, lim f(xn) = lim f(yn) = 1 such that lim supII x„ - v„ II > £. Let «0 be

such that | 1 -/(x„o)|<ô2/8, i 1 -/(/„„) l<«2/8 and ||x„o - yj\ ^ e, and let

x E A'Hf). Then e < ||x„ — y„ II < llx. — x|| + ||x — y„ II. and so we can sup-

pose that ||x„ — x|| 3= e/2. By Theorem 2, there exist z0 E Sx and/0 E A(z0) such

that Hzq-xJI <5and ||/-/0II < ô. Then e/2 =£ llxno-x|| *£ l|jt„0-r0|| + IU0

-xll <(e/4) + diam(/4-'(/) Uy4-'(/0)), and so diam(/!"'(/) U A'\f0)) > e/4,

i.e., the norm of X has property (dr).

Since (ii) is obvious, this completes the proof.

Remark 2. By the above proof of (i) it follows that the norm of X has property

(dr) if and only if there exists an e > 0 such that  for every /£Dom(^"'),
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x EA'\f) and 8 > 0, there exists g E Dom(/r'), ||/- g|| < 8 with

SUp      llx — _V || » £.

y^A-\g)

There exists a strictly convex Banach space A whose norm has property (dr).

Indeed, let II ■ II be the norm on /' defined in the above example. Then c0 has an

equivalent norm whose dual norm on c* = /' is || • ||. Let X be c0 endowed with this

equivalent norm. Then X* being smooth, A is strictly convex and the norm of A"*

being rough, by Theorem 3(i), the norm of A has property (dr).

Definition 3 [7, p. 337]. A norm of a Banach space A is said to be strongly rough

if there is an e > 0 such that for every x E Sx there is an element u E Sx with

t(x, u) + T(X, -12) > E.

Remark 3. By [7, Proposition 2(i) » (ii)] it follows that II • II is strongly rough if

and only if there is an e > 0 such that for every x E Sx, diam A(x) s* e.

Remark 4. With a proof similar with that of Corollary 2, one can show that the

following properties of a given norm of X are equivalent:

(i) II • II is strongly rough.

(ii) There is an £ > 0 such that for every x E Sx there exists u E Sx with

t(x, u) > e and t(x, -u) > e.

(iii) There is an e > 0 such that for every x E Sx there exist /,, f2 E A(x) with

[zESx\fx(z)^e] n{zESx\f2(z)^-e}* 0.

We want now to introduce a concept dual to strongly rough norm. As we shall see,

this is far from being satisfactory.

Definition 4. A norm of a Banach space A is said to have property (dsr) if there

is an e > 0 such that for every/E Dom(^"'), diam(A'\f)) > e. When the Banach

space is a dual space A* and in the above definition/is chosen to be w*-continuous,

then the dual norm of A"* is said to have property (w* dsr).

It is obvious that the norm of X is strongly rough if and only if the dual norm of

A"* has property (w* dsr). A result similar to Theorem 3(i) is no longer true, since for

example the space c0 endowed with the usual norm has property (dsr) while the dual

norm of ej is not strongly rough. We do not have an example of a Banach space A

with the following two properties: the norm of X has not the property (dsr) and the

dual norm of A* is strongly rough.

For each Banach space A, let e^ = sup{£ | diam A(x) > e for each x £ Sx}. Then

clearly this supremum is attained, 0 *s ex *s 2, and we have

ex = inf{diam A(x) | x E Sx).

The known examples of spaces are with ex = 0 or 2; these are not the only cases as

the next result shows.

Theorem 4. For each X, 0 < X < 2, there exist Banach spaces X with ex = X.

Proof. Let E = l\S), S uncountable, endowed with the usual norm. Let /0 =

(as)ses E E*, where a = 1 for some fixed s0 E S and as = 0 for s ¥= s0. Choose ß

such that 1 - (X/2) < ß < (2/X) - (X/2) and let C be the convex hull of

BE„ BE.(ßf0, X/2) and BE.(-ßf0, X/2). Then C is a symmetric w*-compact convex
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body of F*, and it induces an equivalent norm on F by |||x||| = sup(/(x) |/ £ C)

for each x £ F. We have ||x|| <|||x||| ^ (ß + X/2)||x||, x E F. Let A = (F, |||-1||).

Then for each x E Sx, the set Ax(x) intersects either the set BE. U BE.(ßf0, X/2) or

BE. U BE.(-ßf0, X/2). Suppose Ax(x) intersects BE. U BE.(ßf0, X/2) (the other

case is similar). If Ax(x) n BE. =/= 0 then AE(x) C Ax(x), and for/,, /2 E /l£(x)

we have 211/, - f2\\/(2ß + X) <}|(/, -/2|||. Since diam£.^£(x) = 2, it follows

4/(2/3 + A) *£ diam^. ^(x), whence by our assumption on /3 we have

diam^./l^x) > X. If /l^x) n BE.(ßfQ, X/2) ¥= 0 and ^^(x) (~\ BE.= 0, then

/lY(x) C BE.(ßf0, X/2). Since for each /= (i|()jes E F* with tjío = 0 we have

U/H = III/1II» il follows diarn^..^^(x) = X. Note that this last case happens e.g., for

x = (i,)ses E Sx where £Jo = 2/(2/3 + X) and £s = 0 for 5 ¥= s0. Therefore we have

ex = X.

We conclude this note with some questions.

(1) Is it true that for any Banach space A with 0 < ex < 2, there exists an

equivalent norm for which the corresponding e^ equals 2? When ex = 0 such a

question has in general a negative answer, since [9, 7, p. 343] if there is an equivalent

smooth norm, then there is no equivalent strongly rough norm. On the other hand,

in [7, p. 346] the space A = m (which has no equivalent smooth norm [3, p. 522]) has

been renormed in such a way that e^ = 2. So we can ask whether this is not a

general phenomenon, i.e., whether for any Banach space A with no equivalent

smooth norm, there is an equivalent norm such that the corresponding ex equals 2.

(2) There exist spaces A with the property that diam A(x) = ex for all x E Sx.

For example, l\S), S uncountable, has this property with ex = 2, and the smooth

spaces with ex = 0. Is there a Banach space A such that diam A(x) — ex for all

x E Sx and 0 < e^ < 2? If the answer is affirmative, is it true that for any X,

0 < X < 2, there exists a Banach space X such that ex — X and diam A(x) = ex for

all x E S*?
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