ROUGH AND STRONGLY ROUGH NORMS ON BANACH SPACES ## G. GODINI ABSTRACT. We give equivalent conditions for a norm on a Banach space X to be rough using the sets A(x) defined for each $x \in X$ by $A(x) = \{f \in X^* | f(x) = \|x\|, \|f\| = 1\}$. This enables us to obtain unitary characterizations for rough and strongly rough norms. Let X be a real Banach space, and for $x, y \in X$, let $\tau(x, y)$ denote the one sided Gateaux differential of $\|\cdot\|$ at x in the direction y, i.e., $$\tau(x, y) = \lim_{t \to 0^+} t^{-1}(\|x + ty\| - \|x\|).$$ For $x_0 \in X$ and r > 0 we denote $B_X(x_0, r) = \{x \in X | ||x - x_0|| \le r\}$, $B_X = B_X(0, 1)$ and $S_X = \{x \in X | ||x|| = 1\}$. For each $x \in X$ let us denote $A(x) = A_X(x) = \{f \in S_{X^*} | f(x) = ||x||\}$, where X^* is the dual space of X. For $f \in S_{X^*}$, let $A^{-1}(f) = \{x \in S_X | f(x) = 1\}$ and denote by $Dom(A^{-1})$ the set $\{f \in S_{X^*} | A^{-1}(f) \ne \emptyset\}$. By the Ascoli-Mazur Theorem [4, p. 447], for $x, y \in X$ we have (1) $$\tau(x, y) = \max\{f(y) | f \in A(x)\}.$$ DEFINITION 1 [8, 9, p. 120]. A norm of a Banach space X is said to be *rough* if there is an $\varepsilon > 0$ such that for every $x \in X$ and $\delta > 0$, there exist $x_1, x_2, u \in X$, $||x_i - x|| < \delta, i = 1, 2, u \in S_X$, with $\tau(x_2, u) - \tau(x_1, u) \ge \varepsilon$. There are several known characterizations of a Banach space with a rough norm (see e.g., [1, 7, 9, 11, 13]). We add to these characterizations some new ones. In what follows we shall use the following results of [7, Proposition 1, (i) \Leftrightarrow (iv), Proposition 1', (ii) \Leftrightarrow (iv)], some of them being implicitly contained in [9, p. 122]. PROPOSITION 1 [7, p. 336]. The following properties of a given norm of X are equivalent: - (i) The norm of X (the dual norm of X^*) is not rough. - (ii) For every $\varepsilon > 0$ there is an $x \in S_X$ ($f \in S_{X^*}$) such that whenever f_n , $g_n \in S_X$, $\lim f_n(x) = \lim g_n(x) = 1$ ($x_n, y_n \in S_X$, $\lim f(x_n) = \lim f(y_n) = 1$), then $$\limsup \|f_n - g_n\| \le \varepsilon \quad (\limsup \|x_n - y_n\| \le \varepsilon).$$ For a bounded set $A \subset X$, we denote the diameter of A by diam $A = \dim_X A = \sup\{\|a_1 - a_2\| \mid a_1, a_2 \in A\}$. Received by the editors October 19, 1981 and, in revised form, April 23, 1982. 1980 Mathematics Subject Classification. Primary 46B99. 240 G. GODINI THEOREM 1. The following properties of a given norm of X are equivalent: - (i) $\|\cdot\|$ is rough. - (ii) There is an $\varepsilon > 0$ such that for every $x \in S_X$ and $\delta > 0$, there exists $y \in S_X$, $||y x|| < \delta$ with diam $(A(x) \cup A(y)) \ge \varepsilon$. PROOF. (i) \Rightarrow (ii). Since $\|\cdot\|$ is rough, choose $\varepsilon > 0$ given by Definition 1, and let $\varepsilon' = \varepsilon/2$, $x \in S_X$ and $0 < \delta < 2$. By (i) for this $x \in S_X$ and $\delta/2$, there exist $x_1, x_2, u \in X$, $\|x_i - x\| < \delta/2$, i = 1, 2, $u \in S_X$, with $\tau(x_2, u) - \tau(x_1, u) \ge \varepsilon$. By (1) there exist $f_i \in A(x_i)$, i = 1, 2, such that $\tau(x_i, u) = f_i(u)$, i = 1, 2. Then $$\varepsilon \le \tau(x_2, u) - \tau(x_1, u) = f_2(u) - f_1(u) \le ||f_1 - f_2||.$$ Since $x_i \neq 0$, let $y_i = x_i / \|x_i\|$, i = 1, 2. Let $f \in A(x)$. Then $2\varepsilon' \leq \|f_1 - f_2\| \leq \|f_1 - f\| + \|f - f_2\|$ and so we can suppose (interchanging the indices if necessary) that $\varepsilon' \leq \|f_1 - f\| \leq \text{diam}(A(x) \cup A(y_1))$, i.e., we have (ii). (ii) \Rightarrow (i). Let $\varepsilon > 0$ be given by (ii) and let $\varepsilon' = \varepsilon/2$ and $x \in S_X$. By (ii), for each n there exists $y_n \in S_X$, $||y_n - x|| < 1/n$ with $\operatorname{diam}(A(x) \cup A(y_n)) \ge \varepsilon$. Let $f_n, g_n \in A(x) \cup A(y_n)$ such that $||f_n - g_n|| \ge 3\varepsilon/4$ for each n. Clearly, $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} g_n(x) = 1$ and $\lim \sup ||f_n - g_n|| > \varepsilon'$, whence by Proposition 1, the norm is rough. REMARK 1. Using Theorem 1, it is easy to show that the norm of X is rough if and only if there is an $\varepsilon > 0$ such that for every $x \in S_X$, $f \in A(x)$ and $\delta > 0$, there exists $y \in S_X$, $||y - x|| < \delta$ with $\sup_{g \in A(y)} ||f - g|| \ge \varepsilon$. COROLLARY 1. The following properties of a given norm of X are equivalent: - (i) $\|\cdot\|$ is rough. - (ii) There is an $\varepsilon > 0$ such that for every $x \in S_X$ and $\delta > 0$, there exist $x_1, x_2, u \in S_X$, $||x_i x|| < \delta, i = 1, 2$, such that $\tau(x_2, u) + \tau(x_1, -u) \ge \varepsilon$. - (iii) The same as (ii) but with $x_1 = x_2$ or one of x_1, x_2 equals x. PROOF. (i) \Rightarrow (ii). This follows by Definition 1, using the well-known fact [4] that $-\tau(x_1, u) \le \tau(x_1, -u)$. - (ii) \Rightarrow (i). Using formula (1) we obtain that (ii) implies condition (ii) of Theorem 1, whence the norm is rough. - (i) \Rightarrow (iii). By Theorem 1(i) \Rightarrow (ii), there is an $\varepsilon' > 0$ such that for every $x \in S_X$ and $\delta > 0$, there exists $y \in S_X$, $||y x|| < \delta$ with diam $(A(x) \cup A(y)) \ge \varepsilon'$. Let $f, g \in A(x) \cup A(y)$ such that $||f g|| > \varepsilon'/2$. Then there is an element $u \in S_X$ with $(f g)(u) \ge \varepsilon'/2$. If $f \in A(x)$ and $g \in A(y)$ (similarly if $g \in A(x)$ and $f \in A(y)$), then by (1) we obtain $\varepsilon'/2 \le f(u) + g(-u) \le \tau(x, u) + \tau(y, -u)$. In a similar way, if $f, g \in A(x)$ or $f, g \in A(y)$ we obtain respectively $\tau(x, u) + \tau(x, -u) \ge \varepsilon'/2$ or $\tau(y, u) + \tau(y, -u) \ge \varepsilon'/2$. Therefore we have (iii) e.g., for $\varepsilon = \varepsilon'/2$. Since (iii) ⇒ (ii) is obvious, this completes the proof of the corollary. Using a slight modification of [6, Lemma 2] we have LEMMA 1. Let $x, y, u \in S_{\chi}$. If $\tau(x, u) + \tau(y, -u) = \varepsilon > 0$, then there is a $v \in S_{\chi}$ such that $\tau(x, v) \ge \varepsilon/4$ and $\tau(y, -v) \ge (\varepsilon/4) - ||x - y||/2$. PROOF. By (1) there are $f \in A(x)$, $g \in A(y)$ such that $(f - g)(u) = \varepsilon$. Let w = u - (f + g)(u)x/2. Then $0 < ||w|| \le 2$. Let v = w/||w||. We have $$\tau(x,v) \ge f(v) = \frac{1}{\|w\|} \left(\frac{(f-g)(u)}{2} \right) = \frac{\varepsilon}{2\|w\|} \ge \frac{\varepsilon}{4}.$$ Since $g \in A(y)$, we have $g(x) \ge 1 - ||x - y||$ and so $$g(-u) + \frac{(f+g)(u)}{2}g(x) \ge \frac{(f-g)(u)}{2} - ||x-y||.$$ Hence $$\tau(y,-v) \ge g(-v) = \frac{1}{\|w\|} \left(g(-u) + \frac{(f+g)(u)}{2} g(x) \right)$$ $$\ge \frac{1}{\|w\|} \left(\frac{\varepsilon}{2} - \|x-y\| \right) \ge \frac{\varepsilon}{4} - \frac{\|x-y\|}{2}.$$ An immediate consequence of Corollary $l(i) \Leftrightarrow (iii)$, Lemma 1, formula (1) and Theorem 1 is COROLLARY 2. The following properties of a given norm of X are equivalent: - (i) $\|\cdot\|$ is rough. - (ii) There is an $\varepsilon > 0$ such that for every $x \in S_X$ and $\delta > 0$ there exist $y, u \in S_X$, $||y x|| < \delta$, such that either $\tau(y, u) \ge \varepsilon$ and $\tau(y, -u) \ge \varepsilon$ or $\tau(x, u) \ge \varepsilon$ and $\tau(y, -u) \ge \varepsilon \delta$. We recall [10, p. 976] that a normed linear space E has property (\mathfrak{T}) if each closed bounded convex set $K \subset E$ is the intersection of the closed balls containing it. We need the following result of [10, Lemma 4.1]. LEMMA 2 [10, p. 979]. Suppose that the normed linear space E has property (\mathfrak{T}). If $f \in S_{E^*}$ and $0 < \varepsilon < 1$, there exist $\delta(\varepsilon) > 0$ and $x \in S_E$ such that $y \in S_E \cap B_E(x, \delta)$ implies $A(y) \subset B_{E^*}(f, \varepsilon)$. COROLLARY 3. If X has property (\mathfrak{I}), then the norm of X is not rough. PROOF. Use Theorem 1 and Lemma 2. Though Lemma 2 property characterizes property (\Im) [5, p. 114], the converse to Corollary 3 is not always true. Indeed, it is known [12, p. 178] that if a Banach space X is reflexive, then X is an Asplund space (i.e., every continuous convex function defined on an open convex subset of X is Fréchet differentiable on a dense G_{δ} subset of its domain); by [7, p. 344] X is an Asplund space if and only if X does not admit any equivalent rough norm. In particular, any norm on a 2-dimensional Banach space is not rough. On the other hand, by [10, p. 981] a 2-dimensional Banach space X has property (\Im) if and only if X is smooth. Due to the terminology, the following result seems surprising. There is a Banach space X whose norm is both rough and smooth. EXAMPLE. In [10, p. 981] a norm for $m = (l^1)^*$ (the space of bounded sequences $y = \{y_i\}$) was defined by $||y|| = \sup |y_i| + (\sum y_i^2/2^i)^{1/2}$ and for $x = \{x_i\} \in l^1$, $||x|| = \sup \{\sum x_i y_i | y = \{y_i\} \in m, ||y|| = 1\}$. Then $X = (l^1, ||\cdot||)$ is a smooth space 242 G. GODINI [10, p. 981]. Let $\varepsilon < \frac{1}{8}$ and $x \in S_X$. It was shown in [10, p. 982] that for any $y \in S_{X^*}$ such that (x, y) = 1, there exists a sequence $\{y^k\} \subset X^*$ such that $(x, y^k) \to 1$, $\|y^k\| \to 1$ and $\|y^k - y\| \ge \frac{1}{8}$. (Note that in the first case in [10, p. 982] it was not used that $y_i \to 0$ but only that $|y_i| < \frac{1}{4}$ for i > n.) Now, for f_k , $g_k \in S_{X^*}$ defined by $f_k = y$, $g_k = y^k / \|y^k\|$, we have $\lim_{k \to \infty} f_k(x) = \lim_{k \to \infty} g_k(x) = 1$ and $\lim\sup_{k \to \infty} \|f_k - g_k\| > \varepsilon$, whence by Proposition 1, the norm on X is rough. We remark also that there is a Banach space having a nonrough norm with no point of Gateaux differentiability [7, p. 341]. The characterization given in Theorem 1, helps us to introduce the following concept dual to rough norm. DEFINITION 2. A norm of a Banach space X is said to have property (dr) if there is an $\varepsilon > 0$ such that for every $f \in \text{Dom}(A^{-1})$ and $\delta > 0$, there exists $g \in \text{Dom}(A^{-1})$, $||g - f|| < \delta$ with $\text{diam}(A^{-1}(f) \cup A^{-1}(g)) \ge \varepsilon$. When the Banach space is a dual space X^* and in the above definition f and g are chosen to be w^* -continuous, then the dual norm of X^* is said to have property (w^*dr) . To prove the next result we need the following extension of Bishop and Phelps theorem given in [2, Theorem 1]. THEOREM 2 [2, p. 181]. Suppose $x \in S_X$, $f \in S_X$ and $|f(x) - 1| \le \varepsilon^2/2$ ($0 < \varepsilon < \frac{1}{2}$). Then there exist $y \in S_X$ and $g \in A(y)$ such that $||f - g|| \le \varepsilon$ and $||x - y|| < \varepsilon + \varepsilon^2$. THEOREM 3. Let X be a Banach space. Then: - (i) The norm of X has property (dr) if and only if the dual norm of X^* is rough. - (ii) The norm of X is rough if and only if the dual norm of X^* has property ($w^* dr$). PROOF. Suppose the norm of X has property (dr) and let $\varepsilon > 0$ be given by Definition 2. Let $f \in S_{X^*}$ and $\delta > 0$. By Bishop and Phelps theorem there exists $f_1 \in \text{Dom}(A^{-1})$ such that $||f_1 - f|| < \delta/2$. By property (dr) there exists $f_2 \in \text{Dom}(A^{-1})$, $||f_2 - f_1|| < \delta/2$ with $\text{diam}(A^{-1}(f_1) \cup A^{-1}(f_2)) \ge \varepsilon$. Let $x, y \in A^{-1}(f_1) \cup A^{-1}(f_2)$ such that $||x - y|| \ge \varepsilon/2$. Regarding X as a subspace of X^{**} we have for $F \in A(f)$ that $\varepsilon/2 \le ||x - y|| \le ||x - F|| + ||F - y||$, and so we can suppose that $||x - F|| \ge \varepsilon/4$. Since $||f_i - f|| < \delta$, i = 1, 2 and $x \in A(f_i)$ for some i = 1 or 2, it follows that $\text{diam}(A(f) \cup A(f_i)) \ge \varepsilon/4$, whence by Theorem 1, the dual norm of X^* is rough. Conversely, suppose the dual norm of X^* is rough and let $0 < \varepsilon < 2$ be given by Proposition 1(ii). Let $f \in \text{Dom}(A^{-1})$ and $0 < \delta < \varepsilon/4$. By Proposition 1, there exist $x_n, y_n \in S_X$, $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(y_n) = 1$ such that $\lim_{n \to \infty} \sup \|x_n - y_n\| > \varepsilon$. Let n_0 be such that $|1 - f(x_{n_0})| < \delta^2/8$, $|1 - f(y_{n_0})| < \delta^2/8$ and $\|x_{n_0} - y_{n_0}\| \ge \varepsilon$, and let $x \in A^{-1}(f)$. Then $\varepsilon \le \|x_{n_0} - y_{n_0}\| \le \|x_{n_0} - x\| + \|x - y_{n_0}\|$, and so we can suppose that $\|x_{n_0} - x\| \ge \varepsilon/2$. By Theorem 2, there exist $z_0 \in S_X$ and $f_0 \in A(z_0)$ such that $\|z_0 - x_{n_0}\| < \delta$ and $\|f - f_0\| < \delta$. Then $\varepsilon/2 \le \|x_{n_0} - x\| \le \|x_{n_0} - z_0\| + \|z_0 - x\| < (\varepsilon/4) + \text{diam}(A^{-1}(f) \cup A^{-1}(f_0))$, and so $\text{diam}(A^{-1}(f) \cup A^{-1}(f_0)) \ge \varepsilon/4$, i.e., the norm of X has property (dr). Since (ii) is obvious, this completes the proof. REMARK 2. By the above proof of (i) it follows that the norm of X has property (dr) if and only if there exists an $\epsilon > 0$ such that for every $f \in \text{Dom}(A^{-1})$, $x \in A^{-1}(f)$ and $\delta > 0$, there exists $g \in \text{Dom}(A^{-1})$, $||f - g|| < \delta$ with $$\sup_{y \in A^{-1}(g)} \|x - y\| \ge \varepsilon.$$ There exists a strictly convex Banach space X whose norm has property (dr). Indeed, let $\|\cdot\|$ be the norm on l^1 defined in the above example. Then c_0 has an equivalent norm whose dual norm on $c_0^* = l^1$ is $\|\cdot\|$. Let X be c_0 endowed with this equivalent norm. Then X^* being smooth, X is strictly convex and the norm of X^* being rough, by Theorem 3(i), the norm of X has property (dr). DEFINITION 3 [7, p. 337]. A norm of a Banach space X is said to be *strongly rough* if there is an $\varepsilon > 0$ such that for every $x \in S_X$ there is an element $u \in S_X$ with $\tau(x, u) + \tau(x, -u) \ge \varepsilon$. REMARK 3. By [7, Proposition 2(i) \Leftrightarrow (ii)] it follows that $\|\cdot\|$ is strongly rough if and only if there is an $\varepsilon > 0$ such that for every $x \in S_X$, diam $A(x) \ge \varepsilon$. REMARK 4. With a proof similar with that of Corollary 2, one can show that the following properties of a given norm of X are equivalent: - (i) $\|\cdot\|$ is strongly rough. - (ii) There is an $\varepsilon > 0$ such that for every $x \in S_X$ there exists $u \in S_X$ with $\tau(x, u) \ge \varepsilon$ and $\tau(x, -u) \ge \varepsilon$. - (iii) There is an $\varepsilon > 0$ such that for every $x \in S_X$ there exist $f_1, f_2 \in A(x)$ with $\{z \in S_X | f_1(z) \ge \varepsilon\} \cap \{z \in S_X | f_2(z) \le -\varepsilon\} \ne \emptyset$. We want now to introduce a concept dual to strongly rough norm. As we shall see, this is far from being satisfactory. DEFINITION 4. A norm of a Banach space X is said to have property (dsr) if there is an $\varepsilon > 0$ such that for every $f \in \text{Dom}(A^{-1})$, $\text{diam}(A^{-1}(f)) \ge \varepsilon$. When the Banach space is a dual space X^* and in the above definition f is chosen to be w^* -continuous, then the dual norm of X^* is said to have property $(w^* dsr)$. It is obvious that the norm of X is strongly rough if and only if the dual norm of X^* has property (w^* dsr). A result similar to Theorem 3(i) is no longer true, since for example the space c_0 endowed with the usual norm has property (dsr) while the dual norm of c_0^* is not strongly rough. We do not have an example of a Banach space X with the following two properties: the norm of X has not the property (dsr) and the dual norm of X^* is strongly rough. For each Banach space X, let $\varepsilon_X = \sup\{\varepsilon \mid \text{diam } A(x) \ge \varepsilon \text{ for each } x \in S_X\}$. Then clearly this supremum is attained, $0 \le \varepsilon_X \le 2$, and we have $$\varepsilon_X = \inf \{ \operatorname{diam} A(x) \mid x \in S_X \}.$$ The known examples of spaces are with $\varepsilon_{\chi} = 0$ or 2; these are not the only cases as the next result shows. THEOREM 4. For each λ , $0 < \lambda < 2$, there exist Banach spaces X with $\varepsilon_X = \lambda$. PROOF. Let $E = l^1(S)$, S uncountable, endowed with the usual norm. Let $f_0 = (\alpha_s)_{s \in S} \in E^*$, where $\alpha_{s_0} = 1$ for some fixed $s_0 \in S$ and $\alpha_s = 0$ for $s \neq s_0$. Choose β such that $1 - (\lambda/2) < \beta < (2/\lambda) - (\lambda/2)$ and let C be the convex hull of B_{E^*} , $B_{E^*}(\beta f_0, \lambda/2)$ and $B_{E^*}(-\beta f_0, \lambda/2)$. Then C is a symmetric w^* -compact convex 244 G. GODINI body of E^* , and it induces an equivalent norm on E by $|||x||| = \sup\{f(x) | f \in C\}$ for each $x \in E$. We have $||x|| \le |||x||| \le (\beta + \lambda/2)||x||$, $x \in E$. Let $X = (E, ||| \cdot |||)$. Then for each $x \in S_X$, the set $A_X(x)$ intersects either the set $B_{E^*} \cup B_{E^*}(\beta f_0, \lambda/2)$ or $B_{E^*} \cup B_{E^*}(-\beta f_0, \lambda/2)$. Suppose $A_X(x)$ intersects $B_{E^*} \cup B_{E^*}(\beta f_0, \lambda/2)$ (the other case is similar). If $A_X(x) \cap B_{E^*} \ne \emptyset$ then $A_E(x) \subset A_X(x)$, and for $f_1, f_2 \in A_E(x)$ we have $2||f_1 - f_2||/(2\beta + \lambda) \le |||f_1 - f_2|||$. Since $\dim_{E^*} A_E(x) = 2$, it follows $4/(2\beta + \lambda) \le \dim_{X^*} A_X(x)$, whence by our assumption on β we have $\dim_{X^*} A_X(x) \ge \lambda$. If $A_X(x) \cap B_{E^*}(\beta f_0, \lambda/2) \ne \emptyset$ and $A_X(x) \cap B_{E^*} = \emptyset$, then $A_X(x) \subset B_{E^*}(\beta f_0, \lambda/2)$. Since for each $f = (\eta_s)_{s \in S} \in E^*$ with $\eta_{s_0} = 0$ we have ||f|| = |||f|||, it follows $\dim_{X^*} A_X(x) = \lambda$. Note that this last case happens e.g., for $x = (\xi_s)_{s \in S} \in S_X$ where $\xi_{s_0} = 2/(2\beta + \lambda)$ and $\xi_s = 0$ for $s \ne s_0$. Therefore we have $\epsilon_X = \lambda$. We conclude this note with some questions. - (1) Is it true that for any Banach space X with $0 < \varepsilon_X < 2$, there exists an equivalent norm for which the corresponding ε_X equals 2? When $\varepsilon_X = 0$ such a question has in general a negative answer, since [9, 7, p. 343] if there is an equivalent smooth norm, then there is no equivalent strongly rough norm. On the other hand, in [7, p. 346] the space X = m (which has no equivalent smooth norm [3, p. 522]) has been renormed in such a way that $\varepsilon_X = 2$. So we can ask whether this is not a general phenomenon, i.e., whether for any Banach space X with no equivalent smooth norm, there is an equivalent norm such that the corresponding ε_X equals 2. - (2) There exist spaces X with the property that diam $A(x) = \varepsilon_X$ for all $x \in S_X$. For example, $l^1(S)$, S uncountable, has this property with $\varepsilon_X = 2$, and the smooth spaces with $\varepsilon_X = 0$. Is there a Banach space X such that diam $A(x) = \varepsilon_X$ for all $x \in S_X$ and $0 < \varepsilon_X < 2$? If the answer is affirmative, is it true that for any λ , $0 < \lambda < 2$, there exists a Banach space X such that $\varepsilon_X = \lambda$ and diam $A(x) = \varepsilon_X$ for all $x \in S_X$? We want to thank Professor V. Zizler for helpful and stimulating conversations related to the subject matter of this paper. We also want to thank the referee for helpful suggestions. ## REFERENCES - 1. R. Anantharaman, T. Lewis and J. H. M. Whitfield, Smoothability, strong smoothability and dentability in Banach spaces (to appear). - 2. B. Bollobás, An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc. 2 (1970), 181-182. - 3. M. M. Day, Strict convexity and smoothness of normed spaces, Trans. Amer. Math. Soc. 78 (1955), 516-528. - 4. N. Dunford and J. T. Schwartz, *Linear operators. Part I. General theory*, Pure and Applied Mathematics, vol. 7, Interscience, New York and London, 1958. - 5. J. R. Giles, D. A. Gregory and B. Sims, Characterisation of normed linear spaces with Mazur's intersection property, Bull. Austral. Math. Soc. 18 (1978), 105-123. - 6. J. Hagler and F. Sullivan, Smoothness and weak* sequential compactness, Proc. Amer. Math. Soc. 78 (1980), 497-503. - 7. K. John and V. Zizler, On rough norms on Banach spaces, Comment. Math. Univ. Carolinae 19 (1978), 335-349. - 8. J. Kurzweil, On approximation in real Banach spaces, Studia Math. 14 (1954), 214-231. - 9. E. B. Leach and J. H. M. Whitfield, Differentiable functions and rough norms on Banach spaces, Proc. Amer. Math. Soc. 33 (1972), 120-126. - 10. R. R. Phelps, A representation theorem for bounded convex sets, Proc. Amer. Math. Soc. 11 (1960), 976-983. - 11. F. Sullivan, Dentability, smoothability and stronger properties in Banach spaces, Indiana Univ. Math. J. 26 (1977), 545-553. - 12. S. L. Troyanski, On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math. 37 (1971), 173-180. - 13. J. H. M. Whitfield, Rough and strongly rough norms on Banach spaces, Abstracta of the Seventh Winter School Praha, 1979. DEPARTMENT OF MATHEMATICS, INCREST, B-DUL PACII 220, 79622 BUCHAREST, ROMANIA