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COEFFICIENT BOUNDS FOR THE INVERSE

OF A FUNCTION WITH DERIVATIVE IN <3>

RICHARD J. LIBERA AND ELIGIUSZ J. ZLOTKIEWICZ

Abstract. Coefficient bounds for functions with a positive real part are used in a

rather novel way to find sharp bounds for the first six coefficients of a function

which is inverse to a regular normalized univalent function whose derivative has a

positive real part in the unit disk.

1. Introduction. The family S of all functions regular and one-to-one in the open

unit disk A, A = {z G C: | z |< 1}, consists of functions of the form

(1.1) f(z)=z + a2z2 + ajz2 + ■■■ ,    forzinA.

These functions have a rich history [1,2,10,11] and the conjecture that the magni-

tudes of successive coefficients an, n = 2, 3,..., are bounded by those of the Koebe

function, k(z) = z + 2z2 + ■ ■ ■ +nz" + ■ ■ ■, has received widespread attention (and

confirmation only for n = 2, 3,4,5,6).

The inverse of/(z) has a series expansion in some disk about the origin of the

form

(1.2) f(w) = w + y2w2 + y3w3 + • ■• .

It was shown early [9,11] that the inverse of the Koebe function provides the best

bound for all | yk | . New proofs of the latter along with unexpected and unusual

behavior of the coefficients yk for various subclasses of S have generated further

interest in this problem [6,7,8,12]. The purpose of this paper is to examine the early

coefficients of (1.2) for a subclass of S.

As is usually the case we let "P be the family of functions

(1.3) P(z) = 1 + cxz + c2z2 + ■■■

regular and with C:R e P(z) > 0 for z in A. Furthermore we denote by ÍÍ the class of all

functions of form (1.1) defined by

(1.4) /(/)= fp(£)<%,    zinA,

P(¡¡) being any member of C:P. It is well known that (1.4) is one-to-one, consequently

ft C S. For each/(z) in 9, /[A], the image of A under/(z), includes the disk, [4],

(1.5) {wEC:M<log4-l},
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which is also the common region of convergence of series ( 1.2). Using known bounds

on the ck's, in (1.3), we are able to give precise bounds on \yn\ for n = 2, 3,4,5,6

and, by a different method, an estimate for | yn | for all n. The main results are stated

and discussed in §2. Proof of the main theorem is given in §3.

2. Principal results. First let us observe that the coefficients yk cannot be uniformly

bounded over Í, since if they were it would be possible to replace the disk in (1.5) by

a larger one.

Theorem 1. Iff(z)is in i andf(w) - ?%=0ykwk, then

(2.1)       |Y2|<1,    |y3|<3.    |y4|<

and these bounds are all best possible.

Theorem 2. For f(z)as in Theorem 1

(2-2)     |y.l<¿r/"ttn Jq

11
6 Y5

59

15
and |Y6|

344

45

dB

l + 2<r'*log(i ')|"      na"'

n = 2,3, with a = log! I
The last statement is fairly easy to establish using the subordination principle.

From Cauchy's formula for yn along with the relationship between/(z) and/(w), as

was done earlier in [7], we may conclude that

(2.3) Y„ 4-/77in Jltf- fU)
"dz

We need a bound on the integrand.

Hallenbeck [4] has shown that under the stated conditions f(z)/z is subordinate

to -1 — (2/z)log(l — z), consequently, z/f{z) is subordinate to the reciprocal

— z/(z + 21og(l — z)). This says there is a regular function w(z), | w(z) |*s| z | , for

z in A, with the property that

-w(z)
(2.4)

f(z)      w(z) + 21og(l-*(z))

Now, combining (2.4) with (2.3) and applying Rogozinski's majorization principle

for subordinate functions (see p. 369, [2], for example) enables us to write

(2.5) IT. |
i    a*
•nn J0

1
de.

re'9 + 21og(l - re'9)

from which the first bound in (2.2) follows. The remaining bound is obtained by

maximizing the integrand in (2.5).

A comparison of results in Theorems 1 and 2 shows that the bounds in (2.2)

cannot be the best possible. However, those in (2.1) are sharp when/(z) corresponds

to

1 + z
(2.6) Hz,= 1 +   2 2z'

k= i
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in \'P. Also. P()(z) is a function which shows that the lemmata which follow cannot be

improved.

3. Justification of Theorem 1. A function/(z) univalent in a neighborhood of the

origin and its inverse satisfy the condition /(/(h)) = h\ or

(3.1) w=f(w) + a2(f(w)f + a,(f(w)f + ■■■.

Assuming (1.1) and ( 1.2). (3.1 ) yields the equations

Y> + "2 = 0-    Yj + 2a:Y, + a-, = 0,

y4 + a2(yl + 2y3) + 3a,y2 + a4 = 0,

y5 + a2(2y4 + 2y2y3) + a3(3y3 + 3y22 ) + 4a4y: + a5 = 0.

Y(, + tí:(2y5 + 2y2y4 + y2 ) + a3(6y2y3 + 3y4 + y2 )

+ a4(6y22 + 4y3) + 5a5y2 + at = 0

and

Y7 + M2y6 + 2y2ys + 2y3y4) + a3(3ys + 6y:y4 + 3y32 + 3y2:y3)

+ a4(4y4 + 12y2y3 + 4Y,1) + a5(5y, + 10y22) + 6a6y2 + a7 = 0.

(3.2)

Because of the relationship between (i and \'P we write

(3.3) k = 2,3,.

using representation (1.3). Combining (3.2) and (3.3) gives

(3.4)

2y2 6y3 = 3c2 - 2c2,

24y4 = 20c,c2 - 15ef - 6c3,

120y5 = 90c,c, + 40c22 + 105c/ - 210c2c2 - 24c,

and

720y6 = 504c ,c4 + 420c2c, + 2520cfo

-1120c,c22 - 945c-, - 120c5.

1260 c?c.

It is well-known [10,11] that |cj^2 for Â: = 1, 2_   hence, we may write

2 I Y2 l = l c\ Is5 2. This gives the first result in the theorem. For the other bounds we

need additional properties of the coefficients ck.

Lemma 1. IfP(z) G 9and \/P(z) = 1 + l?=xcpk, then

c* = c2 - c2,    c* = c3 - 2c,c2 + c,,

4 2 2
c* = c\ + c2 + 2c,c3 - 3cfc2 - c4,

c* — c5 + c5x + 3cxc2 + 3c2c3 — 4c]c2 — 2cxc

and
(3.5)

2c2c2,

c% = cbx + 6c2c2 + 4cic3 + 2c,c5 + 2c2c4 + c3

-c-, 5cfc, - 3c?c4 - 6c,c,c3 - c6;
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and

(3.6) |<N<2,       k =1,2,3.

The last statement follows from the observation that both P(z) and its reciprocal

are in '.'P.

Using this lemma and (3.4) gives 6 | y3 + 2 | c*x | < 8 and 24 | y41 *s 6 | c\

+1 C| |" + 8 | C| | • | c* |^ 52 which correspond to the second and third inequalities in

(2.1). The last two require additional techniques.

Lemma 2. 77ie power series for P( z ) given in (1.3) converges in A to a function in vP

if and only if the Toeplitz determinants

(3.7)

and  c

I)

c2

c.
1.2.3,

are all nonnegative.   They are strictly positive except for P(z)

2™= xpkP0(e"kz), pk > 0, tk real and tk =£ t, for k =£j and 2k=]pk — I; in this case

D„ > 0 for n < m - 1 and £>„ = 0 for n > m.

This necessary and sufficient condition is due to Carathéodory and Toeplitz and

can be found in [3]. The following lemma can be obtained from representation (2.3),

[5].

Lemma 3. For any complex number a and P(z) in c5\

(3.8) max | c2 — ac2 \— 2max{ 1,| 2a — 1 |}.

We need the first two lemmas to obtain the bound on | y51 and all three for | y6 | .

We may assume without restriction that c, > 0. We begin by rewriting (3.7) for the

cases n = 2 and n = 3.

D, 8 + 2<:Re{c2c2} - 2 | c212 - 4c2 ^ 0,

2c2 = c2 + ^(4-C|)2

which is equivalent to

(3-9)

for some x, \ x | «£ 1.

Then Z)3 s* 0 is equivalent to

| (4c3 - 4c,c2 + c])(4 - c2) + cx(2c2 - c2)2 [< 2(4 - c2f - 2 \ 2c2 - c2 \2;

and this, with (3.9), provides the relation

(3.10)    4c3 = c] + 2(4 - c2)cxx - c,(4 - c2)x2 + 2(4 - c2)(\ - \ x \2)z,

for some value of z, I z I ̂  1.
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By proper rearrangement and application of the triangle inequality to the fourth

member of (3.4) we get

120 | y5 |*S 24 | c3* | +42 | c, | • | c*2 | + | 16c2 + 39c/ - 54c2c21 ;

then the bounds given above and (3.9) make it possible to write

120 | y51< 216 + | 16c2 + 39c/ - 54c2c21

(3.11) =216+| 16c/- 19c2(4-c2).x + 4(l6- 8c2 + c/)x2|

^ 216 + (64 + 44c2 + c/) *£ 216 + 256 = 472

from which we conclude that | y51< 59/15.

Applying similar procedures to y6 we have

(3.12)
720|y6|< 120 | c* | +264|c,| ■ | c* | + 372 | c, |2 • | c3* | + £<4272 + B,

B =| 504cfo + 180c2c3 - 496c,c2 - 189c? | .

To generate a sharp upper bound for B we find it convenient to consider two cases

depending on choices for c,.

Therefore, we assume 0 *£ c, < A. Then

(3.13) ß<|496c,c2- 180c2c3| + 504c?
189   2

°2     504C|

and as a consequence of Lemma 3 we find that 126 is an upper bound for the second

term in (3.13). Now, using the bound | c21< 2 and (3.9) and (3.10). we write

(3.14) 496 cxc\ 180c2c3 2 | 496c,c2 180c,

2[203c? + (4 - cf)(90 + 158c,p - 45(2 - cx)p2)],

with p = | jc | , p < 1. This second degree polynomial in p assumes its maximum

when p = 79c,/45(2 - cx) and in this case we find that the last bound in (3.14) can

be replaced by

360+(124)(34)(2)c2+ 15g6c3
45 45

<814.

Now, this together with the above bound, shows that 720 | y6 |*£ 4272 + 814 + 126

= 5212, which implies the conclusion when 0^c, *zk.'i- i      ¿

Returning again to (3.9), (3.10) and (3.12), we write

(3.15)   2B=\llc5x- 143cJ(4-c2)x+ c,(4- c2)(632 - 113c2)x2

+45c,(4 - cf)2x3 + 90(4 - c2)(l - |*|2)(c2 + (4 - c2)x)z\

^[77cí + 90c2(4-c2)] + (4-c2)

• {[143c? - 90c2 + 360] p + [632c, - 90c2 - 113c|] p2

-45(4-c2)(2-c,)p3},
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by letting p = | x | and invoking the triangle inequality. If we let F(p) denote the last

polynomial, then

(3.16) F'(P) = (4 - c2){[l43c? - 90c2 + 360J +[l264c, - 180c2 - 226^

-135(4 -c2)(2-c,)p2}.

We wish to show F'(p) > 0, for 0 *£ p < 1, and conclude the maximum in (3.15)

occurs when p = 1.

For 4 *£ c, < 2, the coefficient of p2 in (3.16) is negative and both F'(0) and F'(\)

are negative; hence, because of the concavity of the quadratic, we conclude that

F'(p) > 0 for 0 *£ p *í 1 and that F{p) assumes its maximum at 1. With p = 1,

(3.15) becomes

(3.17) 2B =s 3248c, - 992c] + 132c?.

The derivative of the right side of (3.17) for { «s c, *s 2 is positive and the maximum

occurs at 2. Consequently, 2B < 2(1232) and 720 | y6 |< 4272 + 1232 = 5504 which

is equivalent to the bound of the theorem. (Note. The choice of {- for the cases

discussed above is one of convenience rather than necessity.)

The bounds in Theorem 1 are made sharp by the function /0( w ) which corre-

sponds to/0(z) = -z — 21og(l — z) which is obtained by integrating (2.16). If we let

fo(w) = w + 2?= \Bkwk, then we find that the recursion formula

k

(k + \)Bk + x +Bk+   2 (* + 1 -j)BjBk+x_j = 0
j-1

holds for k — 1, 2,..., and Bx = 1. Computation gives B2 = -1, ß3 = 4/3, B4 =

-13/6, B5 - 59/15 and Bh = -344/45. It is quite likely that/0(w) gives the sharp

upper bounds for other (perhaps even all) coefficients, but we were unable to show

this. It may be possible to utilize techniques like those used above for coefficients of

terms of higher degree, but the computations and technical aspects of doing so

appear exceedingly formidable.

Finally, let us remark on the nature of the coefficient problems for/(z) and/(w)

for S and some of its subclasses. As is shown in [1,2,6,7,8,9,12], it appears that for

S and many of its subclasses the coefficient problem for one of either/(z) or/(w) is

relatively straightforward but extremely difficult for the other. The class of starlike

functions is free of this "duality", but some of its subclasses are not [7],
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