
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 87, Number 2, February 1983

LP-BEHAVIOR OF POWER SERIES

WITH POSITIVE COEFFICIENTS AND HARDY SPACES

MIODRAG MATELJEVIC AND MIROSLAV PAVLOVIC

ABSTRACT. For the power series f(x) = JZ" anxn with an > 0, certain

weighted Lp-norms of / on [0,1] are estimated from above and below in terms

of the coefficients an. Some consequences of this are obtained. For example,

some known results concerning Hardy spaces may be extended to a wider class

of spaces.

0. Introduction.   Our main tool here is the following theorem.

THEOREM 1. If a > 0, p> 0, n > 0, n£ N, an >0, In = {k: 2n <k<2n+1,ke

N}, tn = J_lk_in ak and f(x) = Sr anx"' then there is a constant K which depends

only on p and a such that

^f^2-natpn< [ (l-z)a-7(x)pdz</v:¿2-"aí£.
K  o Jo 0

Our proof is based on Jensen's inequality and other elementary inequalities. The

proof shows that the theorem is still valid if tn is replaced by S2n, where Sn =

Yliak- Hence, by the Cauchy condensation test which holds for series whose terms

are quasimonotone, we obtain

COROLLARY 1. Under the condition of Theorem 1, there is a constant K which

depends only on p and a such that

-,        CO /»l CO

£n-(°+1>S£< /   (l-x)a-1f(xydx<K,En-la+»S*n.
A   i J0 i

For a = 1 this result is due to Boas and Askey [1; 2, Theorem 2],

In addition, Theorem 1 can be used to provide easy proofs of some results of

Hardy-Littlewood [5] concerning power series with positive coefficients (see §2).

We proceed to elucidate the connection between our result and some known

results on Hardy spaces. From now on we assume, without loss of generality and

with great gain in convenience that all regular functions under discussion vanish at

the origin. In particular, the Hp spaces used below are thus subsets of the usual

HP spaces (cf. Duren [3]).

DEFINITION 1. If f(z) = J^T anZn is regular on the unit disc, p > 0 and a > 0,

we write / S Dva, whenever

(0.1) ll/HPDS:=Ê2-"X(/)<+co
o
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where rn(f) = (2n¿~2k€In \ak\2)1/2- D"£ can be defined analogously. We also write

Dp instead of Dp.

For p > 1, £>p is a Banach space under the norm defined by (0.1); and for 0 <

p < 1 J9£ (with the obvious translation metric) is a complete F-space. It is easy to

check that, if 1 < p < oo, then Dqa is the Banach dual of Dpa, where l/p+ l/q = 1;

and if 0 < p < 1, then the conjugate space may be identified with the space of

regular functions g(z) = J2T °kZk in the unit disc for which

£ k\bk\2 = 0(22"(q-q/p))      (n -» oo).

kein

The dual pairing in all cases is given by formula (f,g) = __]Tk1~°'akbk- Holland

and Twomey in [9] defined Z| spaces. Theorem 1 and Corollary 1 show that Dp

and Jj may be identified. Holland and Twomey [8, 9] show Hp C Dp for 0 < p < 2,

Dp C Hp for p > 2 and that both inclusions are proper for p / 2.

The following Theorem 2 generalizes this result. Our proof of Theorem 2 resem-

bles that of Holland and Twomey. Both proofs are based on the Hardy-Stein

identity (see §2). Their proof also uses the above-mentioned Askey-Boas result and

the Littlewood inequality [4, 12]; Theorem 1 and Proposition 2, respectively, play

analogous roles in our proof. Note that Proposition 2 is a generalization of the

Littlewood inequality for 0 < p < 2 (aside from the value of the constant), where the

7/p-norm is replaced by the Dp-novm. Also note this proposition is an immediate

consequence of Theorem 1.

Now it is natural to ask whether there are any theorems on Hp spaces which can

be extended to the wider class Dp for 0 < p < 2. The answer is yes: in §2, among

other things, we improve a result of Hardy-Littlewood on fractional integrals.

1. Bergman class and the area function.

Definitions of classes Apa and Hpa. Let f(z) = Y.7&nZn be regular on the unit

disc. We define the functions

P(r) = P(r(/) = f>n|r",
i

A(r) = A(r,f)= if       \f'(z)\2dxdy = 7r¿n|an|2r2",
J J\z\<r j

where 0 < r < 1. The function A(r) is called the area function. In fact, A(r) is the

area of the image of {z: \z\ < z} under /, counting multiplicity.

We shall write / E Apa, p > 0, a > 0, whenever

(1.1) ||/||k := /   A(r, /)P/2(1 - rf-1 dr < oo.
"       Jo

The Bergman class Bpa (p > 0,a > 1) consists of all functions / regular on the unit

disc for which

(1.2) flp{r,f){\-ry-2dr<+™,
Jo

where

IP(r,f) = ^r\f(relB)\pde,      0 < r < 1.
¿TT JO
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We shall use the Hardy-Stein identity [7, p. 42]

r±Ip(r,f) = ^Ep(r,f)      (0 < r < l,p >0),
ar ¿it

where

Ep(r) = Ep(r,f)= ([      \f'(z)\2\f(z)\p-2 dxdy.
J J\z\<r

Also, we shall use the notation / E Hpa, p > 0, a > 0, whenever

(1.3) H/llk, = fQ Ep(r,/)(1 - r)°-ldr < +co.

Integration by parts of (1.2) shows that Hpa = Bpa for a > 1, p > 0.

Thus we can extend the definition of /3£ for q > 0 by (1.3). The symbol Hg is

motivated by the fact that HP = HP.

An extension of the result of Holland and Twomey. The following are immediate

consequences of Theorem 1.

PROPOSITION 1. The spaces Dpa and Apa (p > 0,a > 0) are the same and the

"norms" defined by{0-\) and (1.1) are equivalent.

PROPOSITION 2. Let f E Dpa, p > 0, a > 0. Then there is a constant K which
depends only on p and a such that

i P{r)p{l-r)a-ldt<K
Jo

for all f € DP.

This proposition is a generalization of Hardy-Littlewood's result [6, Theorem 15,

p. 206].
PROOF. Apply first Theorem 1 and then the Cauchy-Schwarz inequality

¿Zlkei  lafcl ̂  rn(/)- Now, we are ready to state the main result of this section.

Theorem 2.   Let a > 0. Then

(1.4) HlcDl   ^/0<p<2,

(1.5) DlC HI   ifp>2.

PROOF.   Suppose first that 0 < p < 2 and / E Hpa. Let

v(r) = P(r,f)p(l-rr-\

Combining the inequality Ep{r,f) > P[r)p~2A(r) with Jensen's inequality (for the

concave action tpl2), we obtain

1 nP/2

P(r,f)-2A(r,f)<p(r)dr\
o

p/2-l

I fll(p(r)dr1-

Now, (1.4) follows from Propositions 1 and 2.
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Suppose now that p > 2 and / € Ava. Combining the inequality Ep(r,f) <

P{r, f)p~2A{r, f) and Holder's inequality, we have

(   rl ) (p-2)/p

11/11^ <II/IIas{/0 P{r,Ml-r)°-ldrj

Application of Propositions 1 and 2 yields (1.5).

The examples f(z) = ^anz2", g{z) = ¿Zbnz2", where 2-n^a-p^\an\p = n~2

and 2-n(a-P/,2)|<5„|p = 1 shows respectively that the inclusions (1.4) and (1.5) are

proper if p / 2.

We shall show that / £ //£. The rest of the proof is similar. Suppose first that

o > p/2. A direct calculation based on the Cauchy condensation test shows that

P{r,f)<K{\-r)-P,

A(r,/)>l(l-r)-^    0<r<l,

where ß = a/p — 1/2, 7 = 2/3 + p/2 and K is a positive constant. Now, the desired

result follows from the inquality Ep(r, f) > P(r)p~2A{r).

For a < p/2 the proof is simpler, because the function P(r,f), 0 < r < 1, is

bounded.

COROLLARY 2. If 0 < q < 1, then Bq C D\/q, where Bq is the Banach

envelope of Hq.

2. Some consequences of Theorem 1.

Fractional derivatives and the area function. For a function / regular in the unit

disc we denote by /^' (/[/3]), ß < 0, the fractional derivative (integral) of order ß.

Recall that

o n-

f[0]=^T(n+l + ß)anZn-

In these notations we have

THEOREM 3. Let p > q > 0, ß > 0, a > 0 and ß/a = 1/q - 1/p. The following

assertions hold:

(a) /// G Dqa, then f[0] E Dpa. There is a function f such that feD% but f[ß] £ D£

for all p. > p.
(b) If f E D%, then fW e £)m for p<q.  There is a function f such that f E Dpa

andfW<£Dqa.

In the case p > 2 > q, a = 1, the assertion (a) improves the corresponding one

for Hp spaces. The statement (b) has no analog in Hp because /' need not belong

to the Nevanlinna class for / bounded in the unit disc.

PROOF. From Definition 1 and T(n + 1 4- ß)/n\ ~ nß', n -* oo, it follows that

fm £Dpa(fE Dpa) if and only if / E Dpa+0p (/W E Dpa+0p). Now, Theorem 3 can
be derived from the following proposition.

PROPOSITION 3. Letp>0,a>0andri>\>l. Then A££ C Apa C A\pa. For

fixed p, a and X there is a function f such that / G Ap and f £ A^ for any p, > X.

//X>1, thenApa*A\pa.
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PROOF.   By Holder's inequality, we obtain

This proves the left inclusion. The example f(z) = Y7 an.zT', where 2_n(Q_P/'2'|an|p

= n-2 shows that this inclusion is proper. The rest of the proof is simple.

Further consequences of Theorem 1.

COROLLARY 3. Let f e Dp for some p > 1. Then Y_o \an\ < °° and f(e%e) G
Ai_i/P, where AQ (0 < a < 1) denotes the class of all complex-valued 2ir-periodic

functions on (—oo,+oo) which satisfy the Lipschitz condition of order a.

In the case 1 < p < 2 this result improves the corresponding one for Hp because

Hp c Dp (for p < 2).

PROOF. Let /' G L>p. Then, by Proposition 2, /J P(r,f')pdr < +oo and,
therefore,

P{r,f') = 0{l-r)-"p,       r-*l_.

Hence,
OO

^|a„|<oc   and   f\z) = 0(1 - r)~^p,      r — 1_,
o

and, by the Hardy-Littlewood theorem [3, Theorem 5.1] /GAi_!/p.

F. Holland and J. B. Twomey [8] have proved that there is a function / such

that / G Hp for each p, 0 < p < oo, while f £ Dp for p > 2. Here, we observe that

h{z) = ¿Z7 n~2z2n G H00, but h <£ Dp for p > 2. This follows from Theorem 1.

On the other hand it is clear that H°° c L>p if 0 < p < 2, because D2 = H2. The

following stronger results hold.

THEOREM 4.   Let 0 < p < 2, g G Jf°° and / G Dp. TVien /(z)ff(2) G Dp.

PROOF. In the case p = 2 the assertion is trivial. Suppose that 0 < p < 2.

From the condition g € H°° it follows that \g'(z)\ < K(l - |z|)-1 {\z\ < 1), for some

constant K. Hence

F(r) ■= [I       \f(z)g'(z)\2 < K.{1 - r)"1 £ |a,|2r2fc,       0 < r < 1,
J J\z\<r j

where K\ is a positive constant. From the condition / G Dp and Theorem 1 it

follows /0 F(r)P/2dr < oo. The statement may easily be derived from Proposition

1 and the inequality

\f'(z)\2\g(z)\2dxdy< \\g\\lA(r,f).

THEORERM 5.   Let f(x) = ¿ZT o.nxn, an > 0,
(i) lfq>0,r>p>l, then

It

L
/« Y'P

(I - xf^-1 fr(x)dx < KAj2n~{P+q~Pq)/q<

(ii) Ifq > 0, 0 < r < p < 1, then

f>-(P+"-P?)/X < K2(f (1 - x)r/q~1fr(x)dx
p/r

where K\ and K2 depend on p, q and r only.
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These results first appear in Hardy-Littlewood [5, Theorem 3 and 11].

PROOF.   Let us first consider (i). By Theorem 1 and Jensen's inequality,

/ (1 - x)r/q-1 fr(x)dx < iif;2Tir(1-1W Y_ 2~"afc ]
Jo o \k€In J

( Y/p
<Kj2^nr{1'1/q)[ £ 2~nal)

o \kein J

where K depends on p, o and r only. Now we use elementary inequalities and a

Cauchy condensation type argument to obtain (i). Part (ii) can be derived in a

similar way.

3. Proof of Theorem 1. Theorem 1 follows immediately from a more general

fact which, because of its independent interest, we state as a theorem. We need

the following notations: $ G A(p,o) (p > o > 0) if $ is a nonnegative real function

defined on [0, +°o), $(0) = 0, $(i)/tp is nonincreasing and $(t)/tq is nondecreasing.

We write 4> G A if 4> G A(p, g) for some p and q. For example, tp E A(p,p) and

tp log(l + i) G A(p + 1, p) if p > 0.

THEOREM 6.  Let (ak), k > 1, be a sequence of nonnegative real numbers, $ G A

anda > 0. Then J¡ *(£"=1 akrk){l-r)a-1 dr < oo if and only t/£" 2~2na*(¿Zi„ <**)

< oo.

For the proof of this theorem we need some elementary facts.

LEMMA 1.   LetQe A(p,fl) (p>q>0) andtn >0 (n = 1,2,...).  Then

(3.1) 6>p<í>(í) < $(6>í) < eq<î>{t)   for0<0<l,t>0,

(3-2) »iCt-Wc«^'^\

Í  CO \

(3.3) W¿U<f>(fn),      0<p<l.

PROOF. (3.1) follows immediately from definitions. Observe that $ is continuous

(by (3.1)) and, therefore, we may suppose that tn = 0 for n > 3. Since 4>(í)1/,p/í is

nonincreasing, $(t)1/P is subadditive and hence (3.2). From (3.2) and elementary

inequalities we derive (3.3).

LEMMA 2. Let 0 < -y < 1 and r](r) = £~2nV (0 < r < 1). Then n(r) <

2r(7)|logr|-T

PROOF.  We have

2T(-y)| logrp = 21-"» J  °° t^r1'2 dt > 2í~i ¿ k^r*'2

> 2l-7g2n2(n+l)h-l)r2" = ^
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Proof of Theorem 6. (=>) Let tn = E/„ afc and r„ = 1 - 2~n (n = 0,1,... ). Then

/0 *( Ê a^n K1 - r)*'1 dr > fl/2 *( E í^2t+1_1 )(i - O*-1 *-

<x>      f  n \    /-r„ + 2

>E* E^n+r1 /   d-^r-1 dr

where Ä"x = e_p2-2Qlog2. Hence

-i

iofJo

>£* e-1E**  2"(n+2)°log2
o     y      fc=o   /

o    Vfc=o    /

4>  E ^rn  (1 - r)""1 dr > i^ E 2-na$(S2n).

(•*=) Let us first suppose that p > 1. Because of the inequality (3.2) we can take

*(i) = tp.

Let 7 = min{l, a/p) and n(r) = E^V, 0 < r < 1. Then, by Jensen's
inequality, we have

/ oo \p        / oo \p oo

E°*rfc     ^   E*nr2"      <»?(r)"-1E2n>2B2-n'"'|inlp.

/'JO

Now, the desired result follows from Lemma 2, the inequality r(l— r)a  1 < | logr|Q  x,

0 < r < 1, and the equality /0 |logr|"r_1r2"_1 dr = r(7)2_n7. A direct calculation

shows that

Ê akrk 1 (1 - r)Q-x dr < K_Y_ 2_na( E °* I -

where (in the case p > q) AT2 = 2p-1r(-y)p.

For p = 1, the proof is similar, but simpler, because we need not introduce

the function n(r). In the case 0 < p < 1 the relation (3.3) is used, and the proof

resembles that for p = 1.
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