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CONCERNING EXACTLY (n, 1) IMAGES OF CONTINUA

SAM B. NADLER, JR. AND L. E. WARD, JR.

Abstract. A surjective mapping/: X — Vis exactly (n, 1) if/"'( v) contains exactly

n points for each y E Y. We show that if Y is a continuum such that each

nondegenerate subcontinuum of Y has an endpoint, and if 2 « n < oc, then there is

no exactly («, 1) mapping from any continuum onto V. However, if Y is a

continuum which contains a nonunicoherent subcontinuum, then such an (n, 1)

mapping exists. Therefore, a Peano continuum is a dendrite if and only if for each n

(2 =í n < oo) there is no exactly (n, 1) mapping from any continuum onto Y. We

also show that for each positive integer n there is an exactly (n, 1) mapping from the

Hubert cube onto itself.

1. Introduction. In the early 1940s a sequence of papers appeared which studied

the existence of exactly (n, 1) mappings defined on various classes of continua. (A

mapping/: X-* Y is exactly (n,\) if /"'( y) contains exactly n points, for each

y E Y.) It was shown by Harrold [5], Roberts [10] and Civin [3] that there is no

exactly (2,1) mapping defined on a closed «-cell (n — 1,2,3), and the problem for

4 *£ n < oo remains open. Other relevant papers are those of Harrold [6,7], Gilbert

[4], Martin and Roberts [8], Borsuk and Molski [1] and Mioduszewski [9].

A related problem is the following: Which continua are the images of some

continuum under an exactly (n, 1) mapping, where 2 =£ n < oo? Some partial answers

were noted by Harrold [6] who showed that no arc has this property and that an

exactly (n, 1) image of a finite graph must contain a copy of 5'. We show that if Y is

a continuum each of whose nondegenerate subcontinua has an endpoint and if

2 ^ n < oo, then there is no exactly (n, 1) mapping from any continuum onto Y. We

also show that there exist exactly (n, 1) mappings from continua onto any non-

hereditarily unicoherent continuum. Thus we can conclude, if Y is a Peano con-

tinuum and 2 *£ n < oo, that Y is a dendrite if and only if there is no (n, 1) mapping

from any continuum onto Y.

In particular, if 2 *£ n, m < oo, then an w-cell is the exactly (n, 1) image of some

continuum (compare [3,5 and 10]). Actually, we are able to show that the continuum

may be taken to be an AR, and this fact permits us to construct an exactly (n, 1)

mapping of the Hubert cube onto itself.

2. The main results. A continuum is a compact connected Hausdorff space. An

element e of continuum Y is an endpoint of Y if e admits arbitrarily small open

Received by the editors March 29, 1982 and, in revised form, June 11, 1982.

1980 Mathematics Subject Classification. Primary 54C10, 54F50, 54F55.
Key words and phrases. Exactly (n. I) mapping, continuum, dendrite, Hubert cube.

£1983 American Mathematical Society

0002-9939/82/0000-0672/S02.25

351



352 S. B. NADLER, JR. AND L. E. WARD, JR.

neighborhoods with one-point boundary. A cutpoint of Y is an element p of Y such

that Y — {p} is not connected.

Lemma. Let Y be a continuum with an endpoint e and let 2 *£ n < oo. // there is an

exactly (n,\) mapping f from a continuum X onto Y, then there is a proper subcon-

tinuum T, of Y such that f'l(Yx) is connected.

Proof. Let/"'(e) = {x,,..., xn) and let Ux, U2,..-, U„ be mutually disjoint open

subsets of X such that x, G U¡ for each i = 1,...,«, and let U= U"=x{Ut}. Since

f'](e) C (J and X — U is compact, there is an open subset V of Y such that e E V

and/"'(K) C U. Since e is an endpoint of Y, we may assume V — V — {/?}. Thus p

is a cutpoint of y and Yx — Y — V is a proper subcontinuum of Y.

Suppose f'\Yx) is not connected; then f'\Yx) = A U B where A and B are

disjoint nonempty closed subsets of X. Define subsets M and N of A as follows:

M = /-'(K)n[ U {u,:f-l(p)nAn u,+ 0}],

#=/-'(F)n[ U {u,:f~i(p)nA n l/= 0}].

Clearly, A/ and N are disjoint. Moreover, since f~\V) n (7, = /"'(K) n t/j for each

i, each of the sets f~\V) D (/, is closed and hence A/ and A/ are closed. Since

A Ef~\Yx) =f-\Y- V) and N Cf\V), it follows that A D N Cf~\p). By
definition of A7,/I n N Df'l(p) = 0 and hence /I n N - 0. Since 5 C/-'(y,) =

f~\Y - V) and A/ C/"'(K), it follows that B n M Cf\p). Suppose there exists

q E B n M. Tntnq Ef'\p) and, by definition of M, q E U, where f~\p) fl^fl

Ux ¥= 0. Letz Ef'\p) f\A n Ut. Then {q, z) Cf~\p) D Í/, and, since ¿7 G ^, C7

and z are distinct. Since f'\p) contains only n points and since the sets (/,,

U2,...,Un are mutually disjoint, there exists £7, such that/"'(/>) n Uj = 0. Hence,

/"'(F) n c/ =/"'('/) n L/ and thus f~\V) n l/ is both open and closed in A.

Now f~x(V)C\ Uj ¥= X and f'\V) ni/^0 since it contains x} as an element.

This contradicts the hypothesis that X is connected and hence B n M = 0. How-

ever, A(/l U A/ ) U ( 5 U A/ ), and hence ADM and BUN constiitute a separation

of A, a contradiction. Therefore/"'(T,) is connected and the Lemma is proved.

Theorem 1. Let Y be a continuum such that every nondegenerate subcontinuum of Y

has an endpoint. If 2 < n < 00, then there is no exactly (n,\) mapping from any

continuum onto Y.

Proof. Suppose, on the other hand, there exists a continuum A and an exactly

(n, 1) mapping/of A onto Y. Consider the family {Ya} of all subcontinua of Y such

that each/"'( Ya) is connected, and let 91 be a maximal nest chosen from this family.

Let y0 = Dz% and let A0 = f~\Y0). Clearly, X0 and Y0 are continua and f\ A0 is

exactly (n, 1). In particular, Y0 cannot be degenerate since X0 is connected. But then

Y0 has an endpoint and so the Lemma contradicts the maximality of 9t.

Recall that a dendrite is a locally connected metrizable continuum which contains

no simple closed curve. It is well known that every nondegenerate dendrite has an

endpoint and that every subcontinuum of a dendrite is a dendrite [11]. Therefore, the

following corollary is immmediate:
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Corollary 1.1. // 2 < n < oo, then there is no exactly (n,\) mapping from any

continuum onto a dendrite.

Theorem 2. // V is a continuum which contains a nonunicoherent subcontinuum and

if \ *£ n < oo, then there is an exactly (n,\) mapping from some continuum X onto Y.

Proof. The identity mapping 1: Y -» Y is (1,1) so we may assume n > \. By

hypothesis, there exist subcontinua A and B of Y such that A D B is not connected;

let P and Q be disjoint nonempty closed sets such that A n B = P U Q. For each

i = 1.n — 1 let A,, 73, and Y, be distinct copies of A, B and 7. We adjoin these

sets to Y as follows: each A, is adjoined at P, each /?, is adjoined at Q and each Y, is

adjoined at A U & The set A = Y U [U",T,l{i4, U 5, U K,}] is a continuum in the

adjunction topology and the natural mapping which identifies each Yt with Y, each

A, with A and each i?, with B is exactly («, 1).

Corollary 2.1. A Peano continuum Y is a dendrite if and only if for each n

(2 < n < oo) there is no exactly (n,\) mapping from any continuum onto Y.

Proof. Since a dendrite is hereditarily unicoherent, this result is immediate from

Corollary 1.1 and Theorem 2.

Theorem 1 can be used to show that certain continua other than dendrites cannot

be exactly (n. 1) images of any continuum (2 < n < oo). For example, the harmonic

fan and the sin( 1 /x )-continuum cannot be such images. It would be of interest to

know if there is a tree-like continuum which is such an image.

The following corollary extends some of the above results to mappings which are

exactly n-component-to-one, i.e., to mappings / such that f'\Y) has exactly n

components for each Y in the range of /.

Corollary 2.2. The statements of Theorem 1 and Corollaries 1.1 and 2.1 remain

valid for mappings which are exaclty n-component-to-one.

Proof. It suffices to show that if the continuum Y is the image of a continuum A

under an exactly w-component-to-one mapping, then Y is the image of some

continuum Af under an exactly (n, 1) mapping. If/: X -» Y is the exactly /i-compo-

nent-to-one mapping, let /=/m be the monotone-light factorization of /. That is,

there is a continuum M, a monotone mapping m: X -> M, and a light mapping /:

M -~ Y such that/= Im. It follows that / is exactly (n, 1).

3. Exactly (n, 1) mappings for the Hubert cube. In the Introduction we noted that

if m ^ 3 then there is no exactly (2,1) mapping defined on the m-cell, but that this

problem is unsolved if 4 < m < oo. In this section we give a solution for m — X0.

Theorem 3. For each positive integer n there is an exactly (n,\) mapping from Q,

the Hilbert cube, onto itself.

Proof. We assume n > 1 since the theorem is obvious if n = 1. Let / denote the

line segment in Euclidean 3-space which joins (0,0,0) and (1,0,0). For each

i = \,...,n— 1 and each j' = 0,1,2,... let /,: denote the line segment joining

(2-J,0,0) and (2"'(1 + (i - l)/n),2'J,0) and let D = I U U,. .{/,J. The set D is a
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dendrite lying in the plane z = 0. Let 2(£>) denote the suspension of D with vertices

(1,0,1) and (1,0,-1) and let Y denote the 2-cell which is the intersection of 2(£>)

and the plane y = 0. Let a(Y) denote the bounding 1-sphere of Y, i.e., a(Y) is the

suspension of the set {(0,0,0), (1,0,0)}. Let A be the line segment joining (1,0,0)

and (2,0,0) and let A = 2( D ) U A. Note that A is an AR since the suspension of an

AR is again an AR and the union of two ARs meeting in a single point is an AR.

There is a natural retraction it: 2(Z>) -» Y which has the property that ir'\y) = y

if y E a Y, and tt~\ y) consists of exactly n points if y E Y — a(Y). (The map tr folds

each of the sets 2(7, ,) homeomorphically onto the suspension of the segment

joining (2~<J+]), 0,0) and (2^,0,0).) Define/from A onto Y by/) 2(D) = rr,f\A

wraps the segment A around oY exactly n — l times. It follows that / is an exactly

(n, l) mapping, and hence/X l: X X Q — Y X Q is exactly (n,\) where l denotes

the identity map on Q. By combining 44.1 and 22.1 of [2], it follows that A X Q is a

Hubert cube. Clearly, Y X Q is a Hubert cube. The theorem follows.

Remark. In 2.7 of [6] it was shown that there does not exist an exactly (n, \)

mapping l < n < oo, from any continuum onto an arc. However, it follows from our

proof of Theorem 3 that there do exist exactly (n, l) mappings from continua onto

A>cells for any k # l : For k = 2, / is the desired mapping and, for k > 2, / crossed

with the identity map on [0, l]*"2 suffices. Moreover, for each k the domain of the

mapping is a Ac-dimensional AR.

References

1. K. Borsuk and R. Molski, On a class of continuous maps, Fund. Math. 45 ( I958), 84-98.

2. T. A. Chapman, Lectures on Hilbert cube manifolds, CBMS Regional Conf. Ser. in Math., no. 28,

Amer. Math. Soc, Providence. R.I.. 1975.

3. P. Civin, Two-to-one mappings of manifolds. Duke Math. J. 10 ( 1943), 49-57.

4. P. Gilbert, n-to-one mappings of linear graphs. Duke Math J. 9 ( 1942). 475-486.

5. O. Ci. Harrold. 777? non-existence of a certain type of continuous transformation. Duke Math. J. 5

(1939). 789-793.
6    _.  Exactly (A.I)  transformations on connected linear graphs. Amer.  J.  Math.  62 (1940).

823-834.

7._Continua of finite sections. Duke Math. J. 8 (1941). 682-688.

8. V. Martin and J. H. Roberts, Two-to-one transformations on 2-mamfolds. Trans. Amer. Math. Soc. 49

(1941), 1-17.
9. J. Mioduszewski, On two-to-one continuous functions. Dissertationes Math. (Rozprawy Mat.) 24

(1961), 42.
10. J. H Roberts, Two-to-one transformations. Duke Math. J. 6 (1940), 256-262.

11. G. T. Whyburn, Analytic topology. Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc,

Providence, R.I., 1942.

Department of Mathematics, West Virginia University. Morgantown, West Virginia 26506

Department of Mathematics, University of Oregon, Eugene, Oregon 97403


