CELL-LIKE DECOMPOSITIONS OF HOMOGENEOUS CONTINUA

JAMES T. ROGERS, JR.1

ABSTRACT. Certain decompositions of homogeneous continua are shown to be cell-like. In particular, the aposyndetic decomposition described by F. B. Jones of a homogeneous, decomposable continuum is cell-like, and we prove that any homogeneous decomposable continuum admits a continuous decomposition into mutually homeomorphic, indecomposable, homogeneous, cell-like terminal continua so that the quotient space is an aposyndetic homogeneous continuum.

D. C. Wilson [8] has shown that a monotone, completely regular map $f: X \to Z$ of the *n*-dimensional continuum X onto the nondegenerate continuum Y has the property that $H^n(f^{-1}(z)) = 0$, for all z in Z. In particular, if n = 1, then the point inverses of f are acyclic continua.

More recently, Mason and Wilson [5] have shown that if n = 1, then the point inverses of f are tree-like continua, that is, f is a cell-like map.

Since the projection maps of a product space onto the factors are completely regular maps, one cannot, in general, extend the Mason-Wilson result to higher dimensions.

The impetus for the Mason-Wilson result, however, was the author's applications [6, 7] of completely regular maps to certain monotone decompositions of homogeneous continua. In this paper, we show that the completely regular, monotone maps arising as quotient maps of these decompositions are cell-like maps. In particular, Jones' aposyndetic decomposition of a homogeneous, decomposable continuum is a decomposition of that continuum into cell-like sets.

A continuum X is cell-like if each mapping of X into a compact ANR is inessential. If the map f is inessential, we write $f \simeq 0$. A continuum is cell-like if and only if it has trivial shape.

A map is cell-like if each of its point inverses is cell-like.

The following theorem is classical.

WIRECUTTING THEOREM. Let A and B be closed subsets of the compact space M. If no connected subset of M intersects both A and B, then there exist disjoint closed subsets M_1 and M_2 of M such that $A \subset M_1$, $B \subset M_2$, and $M = M_1 \cup M_2$.

A subcontinuum Z of the continuum X is said to be terminal if each subcontinuum Y of X such that $Y \cap Z \neq \emptyset$ satisfies either $Y \subset Z$ or $Z \subset Y$.

The proof of the next theorem is similar to that of [2, Theorem 2].

Received by the editors September 11, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54F20, 54F50.

Key words and phrases. Cell-like decomposition, aposyndetic, homogeneous, completely regular map.

¹This research was partially supported by NSF grant number MCS-8101565.

THEOREM 1. If A is a terminal subcontinuum of the continuum X, if B is a subcontinuum of X disjoint from A, and if $f: A \to Y$ is a map of A into the ANR Y, then there exists a map $F: X \to Y$ such that F|A = f and $F|B \simeq 0$.

PROOF. There exists an open set U in X-B containing A and a map $g\colon U\to Y$ extending f. There exists an open neighborhood V of a point a in A such that $V\subset U$ and $g|V\simeq 0$, since Y is locally contractible. Since A-V and X-U are closed subsets of X-V such that no connected subset of X-V meets both A-V and X-U, the Wirecutting Theorem implies that X-V is the union of the disjoint closed sets X_1 and X_2 , with $A-V\subset X_1$ and $X-U\subset X_2$.

Thus $X_1 \cup A$ and X_2 are disjoint closed subsets of X. Let $h: X \to I$ be a Urysohn map with $h(X_1 \cup A) = 0$ and $h(X_2) = 1$. Let $M = h^{-1}([0, \frac{1}{2}])$ and $N = h^{-1}([\frac{1}{2}, 1])$. Then $X = M \cup N$, $A \subset M$, $X - U \subset N$, and $M \cap N \subset V - A$. Since the map $g|M \cap N$ is homotopic to a constant map, there exists an inessential map $k: N \to Y$ such that $k|M \cap N = g|M \cap N$.

The map $F: X \to Y$ defined by

$$F(x) = \begin{cases} g(x), & x \in M, \\ k(x), & x \in N, \end{cases}$$

is the desired extension of f.

A map $g: X \to Z$ between continua is completely regular if for each $\delta > 0$ and each point z in Z, there exists an open set V in Z containing z such that if $z' \in V$ then there is a homeomorphism h from $g^{-1}(z)$ to $g^{-1}(z')$ such that $d(x, h(x)) < \delta$, for each x in $g^{-1}(z)$. Each completely regular map is open.

THEOREM 2. Let $g: X \to Z$ be a monotone, completely regular map of the continuum X onto the nondegenerate continuum Z. Let z_1 be a point of Z. If $g^{-1}(z_1)$ is a terminal subcontinuum of X, then g is a cell-like map.

PROOF. Let Y be a compact ANR, and let $f: g^{-1}(z_1) \to Y$ be a map. Let z_2 be another point of Z, and let $F: X \to Y$ be an extension of f such that $F|g^{-1}(z_2) \simeq 0$.

Since Y is a compact ANR, there exists $\epsilon > 0$ such that for any space W and for any two maps $\alpha, \beta \colon W \to Y$, $d(\alpha, \beta) < \epsilon$ implies $\alpha \simeq \beta$. Let δ be a positive number such that $d(x, x') < \delta$ implies $d(F(x), F(x')) < \epsilon$.

Let $Z_2 = \{z \in Z : F|g^{-1}(z) \simeq 0\}$. We show that Z_2 is open. Let $z \in Z_2$. Since g is completely regular, these exists an open set V in Z containing z such that if $z' \in V$, then there is a homeomorphism h from $g^{-1}(z)$ to $g^{-1}(z')$ such that $d(x,h(x)) < \delta$, for each x in $g^{-1}(z)$. Hence $d(F|g^{-1}(z'), F|g^{-1}(z) \circ h^{-1}) < \epsilon$, and so $F|g^{-1}(z') \simeq F|g^{-1}(z) \circ h^{-1}$. But the latter map is inessential, since $z \in Z_2$, and so $z' \in Z_2$. Hence Z_2 is open. A similar proof shows that Z_2 is closed.

Since Z_2 is a nonempty open and closed subset of the connected set Z, it follows that $Z_2 = Z$ and hence $f \simeq 0$. Thus each mapping of $g^{-1}(z_1)$ into a compact ANR is inessential, and hence $g^{-1}(z_1)$ is cell-like. Since point inverses of completely regular maps defined on continua are homeomorphic, this implies that g is a cell-like map.

The homeomorphism group H of a continuum X is said to respect the decomposition \mathcal{G} of X if $G \in \mathcal{G}$ implies $h(G) \in \mathcal{G}$, for each homeomorphism h in H.

The following theorem is due to E. Dyer (see [3] for a simple proof).

THEOREM 3. Let X and Y be nondegenerate metric continua and let $f: X \to Y$ be a monotone open surjection. Then there exists a dense G_{δ} -subset A of Y having

the following property: for each $y \in A$, for each continuum $B \subset f^{-1}(y)$, for each x from the interior of B in $f^{-1}(y)$ and for each neighborhood U of B in X, there exists a continuum $Z \subset X$ containing B and a neighborhood V of y in Y such that $x \in Z^0$, $(f|Z)^{-1}(V) \subset U$ and $f|Z: Z \to Y$ is a monotone surjection.

THEOREM 4. Let X be a homogeneous continuum. Let \mathcal{G} be a partition of X into terminal subcontinua such that the homeomorphism group of X respects \mathcal{G} . Then

- (1) the partition \mathcal{G} is a continuous decomposition of X.
- (2) The quotient map $\pi: X \to Z$ of X onto the quotient space Z is completely regular.
- (3) Z is a homogeneous continuum.
- (4) The elements of G are mutually homeomorphic, indecomposable, homogeneous, cell-like continua.

PROOF. Parts (1), (2), and (3) have been proved in [7, Theorem 4]. Since the homeomorphism group of X respects \mathcal{G} , it follows that the elements of \mathcal{G} are mutually homeomorphic and homogeneous. Theorem 2 implies that the elements of \mathcal{G} are cell-like. As in [4], Dyer's Theorem and the fact that the elements of \mathcal{G} are terminal continua imply that the proper subcontinua of one (and hence all) of the elements of \mathcal{G} have empty interiors in that element. Hence the elements of \mathcal{G} are indecomposable.

An important application of this theorem is the following improvement of Jones' Aposyndetic Decomposition Theorem [1]. In the case that X is a curve, this improvement is already known from results of Rogers [6] and Mason and Wilson [5].

THEOREM 5. Suppose X is a homogeneous, decomposable continuum. Then X admits a continuous decomposition into mutually homeomorphic, indecomposable, homogeneous, cell-like terminal continua so that the quotient space is an aposyndetic homogeneous continuum.

PROOF. Jones [1] has shown that his decomposition of X consists of terminal continua. Furthermore, the homeomorphism group of X respects this decomposition.

Question 1. Is each homogeneous, indecomposable, cell-like continuum tree-like? Question 2. Can the aposyndetic decomposition of Theorem 5 raise dimension?

REFERENCES

- 1. F. B. Jones, On a certain type of homogeneous plane continuum, Proc. Amer. Math. Soc. 6 (1955), 735-740.
- 2. J. Krasinkiewicz, Mapping properties of hereditarily indecomposable continua, preprint.
- 3. —, On two theorems of Dyer, preprint.
- 4. T. Mackowiak and E. D. Tymchatyn, Continuous mappings on continua. II, preprint.
- 5. A. Mason and D. C. Wilson, Monotone mappings on n-dimensional continua, preprint.
- J. T. Rogers, Jr., Completely regular mappings and homogeneous, aposyndetic continua, Canad. J. Math. 33 (1981), 450-453.
- 7. —, Decompositions of homogeneous continua, Pacific J. Math. 99 (1982), 137-144.
- D. C. Wilson, Completely regular mappings and dimension, Bull. Amer. Math. Soc. 76 (1970), 1057-1061.

Department of Mathematics, Tulane University, New Orleans, Louisiana 70118