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DISTRIBUTIVELY GENERATED CENTRALIZER NEAR-RINGS
C.J. MAXSON AND K. C. SMITH

ABSTRACT. Let G be a finite group. & a group of automorphisms of G and C(&; G)
the centralizer near-ring determined by the pair (€, G). In this paper we investigate
the structure of those centralizer near-rings C(&; G) which are distributively gener-
ated. Particular attention is given to the situation in which G is a solvable group.

1. Introduction. Let G be a group written additively with identity 0, but not
necessarily abelian and let My(G) denote the near-ring of zero-preserving functions
on G. For any near-ring N contained in M(G), we say N is distributively generated
(d.g.) if there exists a monoid & of endomorphisms of G that additively generates N.
Thus if N is d.g. by S then every function f in N has the form f= 3Z!_ ¢0,,
¢ € {-1,1}, 0, €S. For any group @ of automorphisms of G, the set of functions
C(@;G)={f: G- G|f(0) =0, fa(x) = af(x), «a € &, x € G} is a subnear-ring of
My(G) called the centralizer near-ring determined by @ and G. It is the purpose of
this paper to initiate a study of the characterization of those centralizer near-rings
that are distributively generated.

In this paper all groups will be finite, all near-rings will be finite, zero-symmetric
and have an identity element. As in [3], when @ is a group of automorphisms of a
group G, 0(v) = {av|v € G} is the @-orbit containing v and e, is the map in
C(@; G) which is the identity on 6(v) and zero off é(v). Further, for v € G,
stab(v) = {B € @| Bv = v}. For basic definitions and results concerning near-rings
we refer the reader to the book by Pilz [5].

Frohlich, [1], in 1958 determined the structure of the near-ring N generated by all
inner automorphisms of a finite, nonabelian simple group H. This near-ring is
simple and in fact N = My( H). Later, Laxton [2] generalized Frohlich’s result to the
following: Let N C M,(G) be a finite, simple d.g. near-ring with identity which is
not a ring, then N = M(G) and G is a finite, nonabelian invariantly simple group.
(Recall that a subgroup H of a group G is fully invariant if 6( H) C H for each
endomorphism of G.) As an application of Laxton’s result we let N = C(&; G) be a
simple d.g. centralizer near-ring which is not a ring. Thus C(&; G) = My(G) so
@ = {15} and G is a nonabelian, invariantly simple group. Thus, as we shall see the
work in this paper initiates a study of the problem suggested by Frohlich that one
investigate d.g. near-rings of My(G) where G is not invariantly simple.
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The results here are also related to the recent work of the authors and M. R. Pettet
[4]. There we considered the question “When is a centralizer near-ring a ring?”. It
was found that the only rings that occur as centralizer near-rings C(&; G), € a group
of automorphisms of G, are direct sums of fields. In the d.g. case we find a similar
situation when G is a solvable group. In this special case in which C(&; G) is d.g. we
find that C(@; G) is either a field or a direct sum of fields. This situation is
illustrated in the following example.

EXAMPLE 1. Let G = S; and @ = Aut S; (= Inn S;). Under the action of & on G
we have §; = {(1)} U 8, U 6, where 8, = {(12), (23), (13)} and 6, = {(123), (132)}.
Further stab(12) = (I, I(12)}, stab(13) = {I, I(13)}, stab(23) = (I, I(23)} and
stab(123) = stab(132) = {1, I1(123), I(132)} where I(a) is the inner automorphism
determined by a. Let ¢; € C(&; G) denote the identity function on 6, and zero off 6,
i = 1, 2. Then using the results of [3] it is easily seen that

C(R;G) = {0,1,e,,e,,ae,,e, + ae,}

where «(123) = (132). Thus C(&; G) = S, ® S,, S, = {0, ¢,}, S, = {0, e, ae,}, and
s0 C(&; G) is a direct sum of fields. We note that C(@; G) is distributively generated
by & = {I}. Hence distributively generated centralizer near-rings do occur.

We conclude this section with a short summary of the remainder of the paper. In
the next section we present some general results about d.g. centralizer near-rings. In
the final section we specialize to the case in which G is a solvable group and apply
our results to completely determine when C(&; G) is d.g., G solvable.

2. Preliminary results. In this section we develop general results needed for our
study of d.g. centralizer near-rings. As we indicated above, the setting is as follows:
G is a finite group, € a group of automorphisms of G and N is a subnear-ring of
C(&; G). For convenience we shall call N a basic subnear-ring of C(&; G) if e, € N
for every @-orbit §(v) of G.

PROPOSITION 1. Let N be a basic d.g. subnear-ring of C(&; G). If H is a fully
invariant subgroup of G then every -orbit of G — H is a union of cosets of H in G.

PROOF. Let & be the set of endomorphisms of G which are the generators for N. If
f € Nthenf= 3Z¢,® wheree, = 1,9, € 5. Forv € G — H,h € H, we have

flo+h) = Se®,(v+h) = e, (@,(0) + B,(h) = Se,,(v) +

for some h” € H, using the normality of H in G. Thus f(v + h) = f(v) + k'

Suppose v, v + h belong to different orbits. Then, sincee, € N,0 = e (v + h) =
e (v) + h" = v + h’ which would mean v € H, a contradiction. Sov + h € 6(v) for
every h € H and 6(v) is a union of cosets of H.

PROPOSITION 2. Let N be a basic d.g. subnear-ring of C(&; G). Suppose H is a fully
invariant subgroup of G and let @ be the automorphism group of H which is obtained by
restricting the elements of @ to H. If N is the subnear-ring of @(@; H) consisting of the
elements of N restricted to H, then N is basic and d. g
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PrOOF. The map y: N — _17 defined by ¥( f) is the restriction of f to H and is a
homomorphism of N onto N. Since N is basic in C(@; G), N is basic in C(&; H).
Since N is d.g., sois N.

PROPOSITION 3. Let N be a basic d.g. subnear-ring of C(&; G). If H # {0} is a fully
invariant abelian subgroup of G, then H* is an orbit.

PROOF. By Proposition 2, N is a basic d.g. subnear-ring of C( @: H). Since H is
abelian, the set End( H) of all endomorphisms of H is a ring. Hence Nisa ring of
endomorphisms of H.

Assume H* has two distinct orbits 6(h), @(h). If h+ h & 6(h), then since
e, € N we have 0 = ¢,(h + h) = e,(h) + e,(h) = h, a contradiction. On the other
hand, if h + A € @(h) then h + h = e,(h + k) = h, and A = 0, again a contradic-
tion. So H* is one orbit.

PROPOSITION 4. Let N be a basic d.g. subnear-ring of C(&; G). If H is a fully
invariant subgroup of G such that G/H is abelian, then G — H is one orbit.

PROOF. Since G/H is abelian then for every o, wE G- H, vo+w=w+ov+h
for some h € H. Since N is d.g. then as in the proof of Proposition 1, f(v + w) =
f(v) + f(w) + b’ foreveryv,w € G — H,f € N and some h’ € H.

Suppose 6(v), @(w) are distinct orbits in G — H. If v+ w & 6(v) then 0 =
e(v+w)=e(v)+e (w)+h =0v+h and v € H, a contradiction. A similar
contradiction is reached if v + w € 8(v). So G — H is an orbit.

PROPOSITION 5. Let G be a nilpotent group. If N is a basic d.g. subnear-ring of
C(&; G) then N is a field, G is an abelian p-group of exponent p and @ acts transitively
on G*.

PRrOOF. Every nilpotent group contains a fully invariant subgroup H # {0} such
that H is a subgroup of the center of G. Since N is d.g. then f(v + h) = f(v) + f(h)
forall fE N, v € G— H, h € H. By Proposition 1, v + h € §(v). We have v + h
=e(v+ h)=e (v)+ e, (h)=0v+0=0 and A =0. This gives a contradiction
unless G = H, hence G is abelian and N is a ring. By Proposition 3, G* is an orbit,
so G is an abelian p-group of exponent p and C(&; G) is a near-field. As a subring
of C(&; G), N must be a field.

3. Distributively generated C(&; G), G solvable. Throughout this section G is
assumed to be a finite solvable group. It is our goal to show that if C(&; G) is
distributively generated with G solvable then C(&; G) is ating and thus a direct sum
of fields (see [4)).

Since G is solvable, its series of higher commutator subgroups G = G D> G D
G?P D ... D G™ = (0}, where as usual G =[G~ D, G""V],i = 1,2,...,n, forms
a normal series whose factor groups are abelian. For our purposes it is important to
observe that each higher commutator subgroup G'" is a fully invariant subgroup of
G. If G is a solvable group such that G™ = {0}, G"~" # (0} then we shall say G
has derived length n.
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If G has derived length 1 then G is abelian and C(¢; G) d.g. implies C(&; G) is a
field by Proposition 3. The length 2 case is handled in the following theorem, and is
illustrated by the example in §1.

THEOREM 1. Suppose G is a solvable group with derived length 2 and (&, G) is d.g.
for some automorphism group @ of G. Then C(&; G) is a ring and G is a Frobenius
group of order qp", p and q distinct primes.

PROOF. As a consequence of Proposition 5 we may assume G is not a nilpotent
group, and hence not a p-group. Let H = G'", a fully invariant nonzero subgroup of
G. Since G has length 2, H is abelian and G/H is abelian. By Propositions 3 and 4,
G* has two orbits under ¢, namely G — H, H*. It is known [4, Theorem 4] that since
G is not a p-group, G must be a Frobenius group of order gp” with p, ¢ distinct
primes. Moreover H is the Frobenius kernel of G and H is an elementary abelian
group with order p”. A Frobenius complement for G is a cyclic group Q of order gq.
From a result of S. Garrison (see the following lemma) we find thatif v € G — H
and h € H* then stab(v) Zstab(h). Since C(¢; G) is distributively generated, H is
O(d; G)-invariant and stab(v) 2 stab(h). So there are no proper stabilizer con-
tainments among elements of G*, and by [3, Theorem 4], C(&; G) is semisimple.
Since there are two orbits in G*, ¢(&:; G) is a direct sum of two near-fields. Since
C(d; G) is d.g. it is a direct sum of two fields and hence a ring.

LEMMA (GARRISON). For distinct primes p and q let G be a Frobenius group of order
qp" having kernel H, | H|= p", and complement Q, | Q |= q. Suppose & is a group of
automorphisms of G which acts transitively on both H* and G — H. Ifv € G — H and
h € H* then stab(v) stab(h).

PROOF. Suppose v € G — H, h € H* with stab(v) C stab(h). We have | 8(v)|=
(g— DHp"=|d:stab(v)|. Let B = {a EQ|a(nv + H) =nv + H for all n, n = 0,
l.....q — 1} a subgroup of €. We note that stab(v) C %, B is a normal subgroup
of ¢ and |¢ : B |=¢q — 1. Let I = stab(h) N B, then | % : I| divides | B : stab(v) |
=p". Also |B: I| divides | @ : stab(h)|= p”" — 1 and so B = I, and stab(h) D .
We have ¢ — 1 =|@: B|=|@ : stab(h)||stab(h): B|= (p" — 1)|stab(h): B|.and
|@:stab(h)|= p" — 1 < g — 1. This is impossible since

(g — 1)p" =|d:stab(v)|=|d:stab(h)||stab(h):stab(v)|
= (p" — 1)|stab(h): stab(v) |

and g — | divides p" — 1.

PROPOSITION 6. If G is a solvable group with derived length 3 which is not a p-group
and if @ is any automorphism group of G, then C(&; G) is not distributively generated.

PROOF. Assume G is a solvable group with derived length 3 and with an
automorphism group @ such that C(&; G) is distributively generated. Then G O G
D G? DG =(0). Let H=G" and K= G®. From Propositions 2,3,4 and
Theorem 1, the orbits of G* are G — H, H — K and K*. Moreover if & is & restricted
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to H then C(&; H) is distributively generated by Proposition 2. From the proof of
Theorem 1, H is a Frobenius group of order gp” with [H: K] =g¢q and K is an
elementary abelian group of order p”. Since @ acts transitively on G — H we must
have [G: H] = r™ for some prime r.

Assume r # p, q. Then G — H contains an element of order r and since G — H is
an orbit, then every element in G — H has order r. Hence every element in G* would
have order either r, p or g. By Theorem 3 of [4], the only finite groups having the
property that every nonidentity element has prime order are p-groups of exponent p,
Frobenius groups of order gp”, and the alternating group A5. None of these is
possible in this case. (As_ is excluded because it is not solvable.)

Assume r = g. Then G = G/K is a g-group. If @ is the automorphism group on G
induced by @, then G* has two ®-orbits. The function ®: C(&; G) » C(@; G)
defined by ®: f — f where f(a + G) = f(a) + G, is a homomorphism of C(&; G)
into C(&; G). The image of ® is a basic d.g. subnear-ring of C(&; G). By Proposi-
tion 5, @ acts transitively on G*, a contradiction.

Assume r = p, which is the remaining possibility. The group G/K has two
nonzero orbits under the automorphism group induced by &. By Theorem 4 of [4],
the order of G/K must be pq. This means [G: H] = p. We now have | G|= gp"*!
with [G: Hl=p,[H: K] =gq, |K|= p" and H is a Frobenius group of order gp”".
To prove no such group exists we use an argument suggested by S. Gagola. Let Q be
a Sylow g-subgroup of H, a cyclic group of order q. By the Frattini argument [6, p
88]. G = Ny(Q)H. We have | Ne(Q) N H || G|=| Ny(Q)| | H| , or

| Ne(Q) N H|gp™"" =| Ns(Q) | gp”

and so p divides | N;(Q)|. We claim N (Q) N K = {0}. Assume v € Ny(Q) N K,
v#0.Thenforx €E Q,v+x—v=ix,1<i<qg Hencev+x—v—x€QNK
= {0}. So v + x = x + v which is impossible because v + x would have order pgq.
So N;(Q) N K= {0} and N;(Q) contains an element of order p not in K and
therefore in G — H. This means every element in G — H has order p and thus every
element in G* has order p or ¢, and G is Frobenius by Theorem 3 of [4]. But such a
Frobenius group would have a normal Sylow subgroup and our group does not,
again a contradiction. Since none of the possibilities can occur we conclude that
C(@; G) cannot be distributively generated.

THEOREM 2. Suppose C(&; G) is distributively generated and G is solvable. Then
C(®; G) is a ring and G has derived length 2.

Proor. From Theorem 1 and Proposition 6 it suffices to show that the derived
length of G cannot be larger than 3. Assume C(&; G) is d.g. with G having derived
length 4. Let H be the commutator subgroup of G and let @ be the automorphism
group on H induced by @. Then H has derived length 3 and C(Q; H) is d.g.. an
impossible situation due to Proposition 6. Inductively it is seen that the derived
length of G cannot be larger.
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