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DISTRIBUTTVELY GENERATED CENTRALIZER NEAR-RINGS

C. J. MAXSON AND K. C SMITH

Abstract. Let G be a finite group. & a group of automorphisms of G and Q(&; G)

the centralizer near-ring determined by the pair (&, G). In this paper we investigate

the structure of those centralizer near-rings Q(&; G) which are distributively gener-

ated. Particular attention is given to the situation in which G is a solvable group.

1. Introduction. Let G be a group written additively with identity 0, but not

necessarily abelian and let M0(G) denote the near-ring of zero-preserving functions

on G. For any near-ring N contained in M0(G), we say N is distributively generated

(d.g.) if there exists a monoid S of endomorphisms of G that additively generates N.

Thus if N is d.g. by S then every function f in N has the form /= Ti=xeloi,

e, G {-1,1}, a, G S. For any group 6? of automorphisms of G, the set of functions

6(â;G) = {/:(?- G|/(0) = 0,fa(x) = af(x),a E<$,x EG) is a subnear-ring of

M0(G) called the centralizer near-ring determined by (Î and G. It is the purpose of

this paper to initiate a study of the characterization of those centralizer near-rings

that are distributively generated.

In this paper all groups will be finite, all near-rings will be finite, zero-symmetric

and have an identity element. As in [3], when 6? is a group of automorphisms of a

group G, 0(v) = {at>|u G G) is the (Sorbit containing v and eD is the map in

G(&; G) which is the identity on 6(v) and zero off 8(v). Further, for vEG,

stab(u) = {ß E d\ ßv = v). For basic definitions and results concerning near-rings

we refer the reader to the book by Pilz [5].

Fröhlich, [1], in 1958 determined the structure of the near-ring TV generated by all

inner automorphisms of a finite, nonabelian simple group H. This near-ring is

simple and in fact /V = M0(H). Later, Laxton [2] generalized Fröhlich's result to the

following: Let N Ç M0(G) be a finite, simple d.g. near-ring with identity which is

not a ring, then TV = M0(G) and G is a finite, nonabelian invariantly simple group.

(Recall that a subgroup H of a group G is fully invariant if a(H) C H for each

endomorphism of G.) As an application of Laxton's result we let /V = 6(â; G) be a

simple d.g. centralizer near-ring which is not a ring. Thus 6(&; G) — M0(G) so

fcp = {lc} and G is a nonabelian, invariantly simple group. Thus, as we shall see the

work in this paper initiates a study of the problem suggested by Fröhlich that one

investigate d.g. near-rings of M0(G) where G is not invariantly simple.
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The results here are also related to the recent work of the authors and M. R. Pettet

[4]. There we considered the question "When is a centralizer near-ring a ring?". It

was found that the only rings that occur as centralizer near-rings 6(6?; G), 6? a group

of automorphisms of G, are direct sums of fields. In the d.g. case we find a similar

situation when G is a solvable group. In this special case in which 6(6?; G) is d.g. we

find that G(&; G) is either a field or a direct sum of fields. This situation is

illustrated in the following example.

Example 1. Let G - S3 and 6? = Aut 53 (= Inn S3). Under the action of & on G

we have S3 = {(1)} U 0, U 62 where 0X = {(12), (23), (13)} and 02 = {(123), (132)).

Further stab(12) = {/, 7(12)}, stab(13) = {I, 7(13)}, stab(23) = {/, 7(23)} and

stab(123) = stab(132) = {7, 7(123), 7(132)} where 1(a) is the inner automorphism

determined by a. Let e, E 6(6?; G) denote the identity function on 6¡ and zero off 9,,

i = 1,2. Then using the results of [3] it is easily seen that

6(6?; G) = {0,\,ex,e2,ae2,ex + ae2)

where a(123) = (132). Thus (2(6?; G) = S, © S2, S, = {0, ex), S2 = {0, e2, ae2}, and

so 6(6?; G) is a direct sum of fields. We note that 6(6?; G) is distributively generated

by S = {/}. Hence distributively generated centralizer near-rings do occur.

We conclude this section with a short summary of the remainder of the paper. In

the next section we present some general results about d.g. centralizer near-rings. In

the final section we specialize to the case in which G is a solvable group and apply

our results to completely determine when 6(6?; G) is d.g., G solvable.

2. Preliminary results. In this section we develop general results needed for our

study of d.g. centralizer near-rings. As we indicated above, the setting is as follows:

G is a finite group, 6? a group of automorphisms of G and N is a subnear-ring of

6(6?; G ). For convenience we shall call N a basic subnear-ring of 6(6?; G) if ev G N

for every 6?-orbit 0(v) of G.

Proposition 1. Let N be a basic d.g. subnear-ring of 6(6?; G). If H is a fully

invariant subgroup of G then every Srorbit of G — H is a union of cosets of H in G.

Proof. Let S be the set of endomorphisms of G which are the generators for N. If

/ G N then/ = 2c,<ï>, where e, = ±1, 4>, G S. For v G G - H, h E H, we have

f(v + h) = ^(c + h) = £«,(*,(*) + *,(*)) = 2>,<Mu) + h'

for some h' G H, using the normality of H in G. Thus/(t> + h) — f(v) + h'.

Suppose v, v + h belong to different orbits. Then, since ev E N, 0 = ev(v + h ) =

ev(v) + h' — v + h' which would mean v E H, a contradiction. So v + h E 8(v) for

every h E H and 0( v ) is a union of cosets of H.

Proposition 2. Let N be a basic d.g. subnear-ring o/6(6?; G). Suppose H is a fully

invariant subgroup of G and let 6? be the automorphism group of H which is obtained by

restricting the elements of âto H. If N is the subnear-ring of'6(6?; H) consisting of the

elements of N restricted to H, then N is basic and d. g.
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Proof. The map \p: N -» N defined by ip( f ) is the restriction of / to H and is a

homomorphism of N onto N. Since N is basic in 6(6?; G), N is basic in 6(6?; //).

Since N is d.g., so is N.

Proposition 3. Let N be a basic d.g. subnear-ring 0/6(6; G). If H ¥= {0} is a fully

invariant abelian subgroup of G, then H* is an orbit.

Proof. By Proposition 2, A7 is a basic d.g. subnear-ring of 6(6?; H). Since H is

abelian, the set End(/7) of all endomorphisms of H is a ring. Hence N is a ring of

endomorphisms of H.

Assume H* has two distinct orbits 6(h), 0(h). If h + h G 0(h), then since

eh E N we have 0 = eh(h + h) = eh(h) + eh(h) — h, a contradiction. On the other

hand, if h + h E 0(h) then h + h — eh(h + h) = k, and h = 0, again a contradic-

tion. So H* is one orbit.

Proposition 4. Let N be a basic d.g. subnear-ring of 6(6?; G). 7/ /7 « a /«//v

invariant subgroup of G such that G/H is abelian, then G — H is one orbit.

Proof. Since G/H is abelian then for every v,w E G — H, v + w = w + v + h

for some h E H. Since N is d.g. then as in the proof of Proposition 1, f(v + w) =

f(v) + f(w) + h' for every v,w E G — H,f E N and some h' E H.

Suppose 0(v), 0(w) are distinct orbits in G — H. If v + w G 0(v) then 0 =

ev(v + w) = ev(v) + ev(w) + h' — v + h' and v E H, a contradiction. A similar

contradiction is reached if v + w E 0(v). So G — H is an orbit.

Proposition 5. Let G be a nilpotent group. If N is a basic d.g. subnear-ring of

6(6?; G ) then N is a field, G is an abelian p-group of exponent p and 6? acts transitively

on G*.

Proof. Every nilpotent group contains a fully invariant subgroup H ¥= {0} such

that 77 is a subgroup of the center of G. Since N is d.g. then/(u + h) = f(v) + f(h)

for all / G N, v E G - H, h G H. By Proposition i, v + h E 6(v). We have v + h

= ev(v + h) = ev(v) + ev(h) = v + 0 = v and h — 0. This gives a contradiction

unless G = H, hence G is abelian and N is a ring. By Proposition 3, G* is an orbit,

so G is an abelian p-group of exponent p and 6(6; G) is a near-field. As a subring

of 6(6; G), N must be a field.

3. Distributively generated G(&; G), G solvable. Throughout this section G is

assumed to be a finite solvable group. It is our goal to show that if 6(6; G) is

distributively generated with G solvable then G((S; G) is a ring and thus a direct sum

of fields (see [4]).

Since G is solvable, its series of higher commutator subgroups G = G(0) D G0) D

G,2)D ■■• Z> G"" = {0}, where as usual G(" = [G(,-1>, G0"1»], i:= 1,2,...,«, forms

a normal series whose factor groups are abelian. For our purposes it is important to

observe that each higher commutator subgroup G<0 is a fully invariant subgroup of

G. If G is a solvable group such that G(B) = {0}, G<n ° * {0} then we shall say G

has derived length n.
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If G has derived length 1 then G is abelian and G(d; G) d.g. implies G((£; G) is a

field by Proposition 3. The length 2 case is handled in the following theorem, and is

illustrated by the example in §1.

Theorem 1. Suppose G is a solvable group with derived length 2 and G(â; G) is d.g.

for some automorphism group 6 of G. Then 6(6; G) is a ring and G is a Frobenius

group of order qp", p and q distinct primes.

Proof. As a consequence of Proposition 5 we may assume G is not a nilpotent

group, and hence not a p-group. Let H = G(", a fully invariant nonzero subgroup of

G. Since G has length 2, 77 is abelian and G/77 is abelian. By Propositions 3 and 4,

G* has two orbits under tf, namely G — 77, 77*. It is known [4, Theorem 4] that since

G is not a /?-group, G must be a Frobenius group of order qp" with p, q distinct

primes. Moreover 77 is the Frobenius kernel of G and 77 is an elementary abelian

group with order/?". A Frobenius complement for G is a cyclic group Q of order q.

From a result of S. Garrison (see the following lemma) we find that if v E G — 77

and h E 77* then stab(f) ÇZstab(ft). Since G (tit; G) is distributively generated, 77 is

6(6?; G)-invariant and stab(u) ^)slab(h). So there are no proper stabilizer con-

tainments among elements of G*. and by [3,Theorem 4], 6(6?; G) is semisimple.

Since there are two orbits in G*, G((3; G) is a direct sum of two near-fields. Since

6(6?; G) is d.g. it is a direct sum of two fields and hence a ring.

Lemma (Garrison). For distinct primes p and q let G be a Frobenius group of order

qp" having kernel 77, | 77 | = p", and complement Q, \Q\— q. Suppose tf is a group of

automorphisms of G which acts transitively on both 77* and G — H.IfvEG — 77 and

h E 77* then stab(u) (¿stab(h).

Proof. Suppose v E G - 77, h E 77* with stab(t>) Q stab(/i). We have \0(v)\ =

(q - \)p" =|tf : stab(u) | . Let $ = {«E 6|a(m> + 77) = nv + 77 for all n, n = 0,

1,... ,q - 1) a subgroup of tf. We note that stab(u) C 6S, 'S is a normal subgroup

of tf and | tf : 'S | = q - 1. Let 7 = stab(/i) n °S, then | % : 7| divides | 'S : stab(u) |

= p". Also | ® : 71 divides | tf : stab(A) | = p" - \ and so <S = 7, and stab(/i) D 'S.

We have q- 1 =|tf: <S| = |tf : stab( h ) 11 stab( h ) : <S|= (p" - \)\stab(h): <S|.and

| tf : stab(h)\— p" — 1 < q — 1. This is impossible since

(q - \)p" =|tf :stab(u)| = |6T:stab(/!)||stab(Ä):stab(t>)|

~(p" - 1)| stab( h ) : stab( v ) |

and q — 1 divides/?" — 1.

Proposition 6. If G is a solvable group with derived length 3 which is not a p-group

and if & is any automorphism group of G, then G((3; G) is not distributively generated.

Proof. Assume G is a solvable group with derived length 3 and with an

automorphism group tf such that 6(6; G) is distributively generated. Then G D G(l)

D G<2> D G(3) = {0}. Let 77 = G(1) and K = G<2). From Propositions 2,3,4 and

Theorem 1, the orbits of G* are G - 77, 7/ - K and K*. Moreover if tf is tf restricted
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to 77 then 6(6?; 77) is distributively generated by Proposition 2. From the proof of

Theorem 1, 77 is a Frobenius group of order qp" with [77: K] = q and K is an

elementary abelian group of order p". Since 6 acts transitively on G — 77 we must

have [G : 77] = rm for some prime r.

Assume r ¥= p, q. Then G — 77 contains an element of order r and since G — H is

an orbit, then every element in G — 77 has order r. Hence every element in G* would

have order either r, p or q. By Theorem 3 of [4], the only finite groups having the

property that every nonidentity element has prime order are /^-groups of exponent p,

Frobenius groups of order qp", and the alternating group A5. None of these is

possible in this case. ( A5 is excluded because it is not solvable.)

Assume r = q. Then G = G/7C is a ü-group. If 6? is the automorphism group on G

induced by 6, then G* has two 6-orbits. The function 0: 6(6;G)->6(6?;G)

defined by <!>:/->/ where f(a + G) = f(a) + G, is a homomorphism of Q(&; G)

into 6(6?; G). The image of 0 is a basic d.g. subnear-ring of 6(6; G). By Proposi-

tion 5, 6? acts transitively on G*, a contradiction.

Assume r = p, which is the remaining possibility. The group G/K has two

nonzero orbits under the automorphism group induced by 6?. By Theorem 4 of [4],

the order of G/K must be pq. This means [G : 77] —p. We now have | G | = qpn+ '

with [G: 77] = p, [77: K] — q, \K\ = p" and 77 is a Frobenius group of order qp".

To prove no such group exists we use an argument suggested by S. Gagola. Let Q be

a Sylow ^-subgroup of 77, a cyclic group of order q. By the Frattini argument [6, p.

88], G = NC(Q)H. We have | NC(Q) n 7711 G | = | NG(Q) \ | 771 , or

|^c(ß) n 77 | ̂ "+1 =1/^(2)1^"

and so p divides | NC(Q) \ . We claim NC(Q) n K = {0}. Assume v E NC(Q) n K,

v =£ 0. Then for x E Q, v + x — v = ix, \ < i < q. Hence v + x — v — xEQHK

— {0}. Soo+r = x + u which is impossible because v + x would have order pq.

So NC(Q) n K = {0} and NG(Q) contains an element of order p not in K and

therefore in G — 77. This means every element in G — 77 has order p and thus every

element in G* has order p or q, and G is Frobenius by Theorem 3 of [4]. But such a

Frobenius group would have a normal Sylow subgroup and our group does not,

again a contradiction. Since none of the possibilities can occur we conclude that

6(6?; G) cannot be distributively generated.

Theorem 2. Suppose G (tit; G) is distributively generated and G is solvable. Then

6(6?; G) is a ring and G has derived length 2.

Proof. From Theorem 1 and Proposition 6 it suffices to show that the derived

length of G cannot be larger than 3. Assume G (tit; G) is d.g. with G having derived

length 4. Let 77 be the commutator subgroup of G and let tf be the automorphism

group on H induced by tf. Then 77 has derived length 3 and G (tit; 77) is d.g., an

impossible situation due to Proposition 6. Inductively it is seen that the derived

length of G cannot be larger.



414 C. J. MAXSON AND K. C. SMITH

References

1. A Fröhlich, The near-ring generated by the inner automorphisms of a finite simple group, J. London

Math. Soc. 33 (1958), 95-107.

2. R. R. Laxton, Primitive distributively generated near-rings, Mathematika 8 ( 1961 ), 143-158.

3. C J. Maxson and K. C Smith, The centralizer of a set of group automorphisms, Coram. Algebra 8

(1980), 211-230.
4. C. J. Maxson, M. R. Pettet and K. C Smith, On semisimple rings that are centralizer near-rings.

Pacific J. Math, (to appear).

5. G. Pilz, Near-rings, North-Holland, New York, 1977.

6. J. J. Rotman, The theory of groups, an introduction, 2nd ed., Allyn & Bacon, Boston, Mass., 1973.

Department of Mathematics, Texas A & M University, College Station, Texas 77843-3368


