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LENGTH AND AREA ESTIMATES OF THE DERIVATIVES

OF BOUNDED HOLOMORPHIC FUNCTIONS

SHINJI YAMASHITA

Abstract. MacGregor [1] and Yamashita [5] proved the estimates of the coefficient

a„ of the Taylor expansion/(z) = a() + a„z" + ■ ■ ■ of / nonconstant and holomor-

phic in | z | < 1 in terms of the area of the image of | z | < r < 1 by / and the length of

its outer or exact outer boundary. We shall consider some analogous estimates in

terms of the non-Euclidean geometry for / bounded, |/|< 1, in |z|< 1. For

example, 2nr" \ an |/(1 — | aa \2) is strictly less than the non-Euclidean length of the

boundary of the image of | z | < r, the multiplicity not being counted.

1. Introduction. Unless otherwise specified, by / we always mean a function

nonconstant, holomorphic, and bounded, |/|< 1, in the disk (7= {|z|< 1}. The

non-Euclidean metric in U is expressed by the differential form p(z)\dz\ , p(z) =

(1 - |z|2)-', z EU. Then A(z, r) = {w G ÍT; | w - z\/\ 1 - zw\<r) is the non-

Euclidean disk of the non-Euclidean center z E U and the non-Euclidean radius

(l/2)log[(l + r)/(\ -r)](0<r<\).

By the image g(G) of a domain G by a function g holomorphic in G we mean the

set of w in the w-plane such that w — g(z) for at least one z EG; simply, g(G) is the

projection of the Riemannian image of G by g. The exact outer boundary Ci(r, z) of

D(r, z) = D(r, z, f) =/(A(z, r)) is the boundary of the unbounded component of

the complement of the closure of D(r, z) in the plane; see [5], Roughly, C*(r, z) is

the boundary dD(r, z) of D(r, z) minus the "shorelines" of the "bays" and the

"lakes" of the "island" D(r, z). Furthermore, C*(/% z) is a Jordan curve consisting

of a finite number of analytic arcs. Let

X(r, z) = j p(w) \dw\
JC*(r,z)

be the non-Euclidean length of Ctt(r, z). The non-Euclidean length of dD(r, z) is

thus not smaller than X(r, z) > 0.

A non-Euclidean version of S. Yamashita's estimate [5, Theorem 2] is

Theorem 1. Let f be nonconstant, holomorphic, and bounded, \f\< 1, in U. Let

« = n(z) be the first number such that /(n)(z) ¥=0, n > \, z E U. Then, for each r,

0<r< 1,

(1.1) 2Wr"(l-|z|2)"|/""(z)|/[«!(l-|/(z)|2)]

<*(X(r,z))<X(r,z),

where, for 0 < x < + oo, $(x) > 0 and ®(x)2 = 2tr(-n2 + x2)1/2 - 2tt2.
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We note that (0 <) $(x) < x for x > 0, so that the second inequality in (1.1) is

immediate.

In particular, (1.1) for z = 0, together with

(1.2) f(z) = a0 + a„z" + .--        (an + 0),

yields that

27rr"|a„|/(l - |a0|2) ^i>(A(r,0)) <A(r,0);

this is a non-Euclidean counterpart of [5, Theorem 1].

For the proof of Theorem 1 we shall make use of the following Theorem 2;

unfortunately, the formulation appears to be complicated.

Let E be the unbounded component of the complement of D( r, z ), not that of the

closure of D(r, z). Let D (r, z) be the complement of E. Then D (r, z) consists of

the "island" D(r, z) plus its reclaimed "lakes". As is pointed out by T. H.

MacGregor [l,p. 319; 2, Lemma 2], the domain D (r, z) is simply connected whose

boundary is called the outer boundary of D(r, z). Thus, for/(z) = (z + 1/ j3)3/&,

D(r,0) is a proper subset of D~(r,0) if 1/2 < r < 1, while D(r,0) = £>"(/-,0) if

0<r< 1/2.

Returning to our general/we let

ot(r, z) = a(r, z, /) = / / p{w)  dx dy        (w — x + iy)
J JD\r.z)

be the non-Euclidean area of D (r, z) (0 < r < 1, z G (7).

Theorem 2. Let f and n(z) be as in Theorem 1. Then, for each r,0 < r < 1,

(1.3) ^2"(l-|z|2)2"|/(",(^)/[«!(l-|/(^)|2)]|2<«('-^).

Specifically, ( 1.3) for z = 0 with ( 1.2) reads

(1.4) „r2»[\a„\/{l-\a0\2)]2^a(r,0),

for all r, 0 < r < 1. This is a non-Euclidean counterpart of MacGregor's estimate

[1, Theorem 1]:

(1.5) trr2"\a„\2<a(r,0),

where a(r, 0) is the Euclidean area of D(r, 0), not that of D (r,0) for/of (1.2) not

necessarily bounded in U. Since a(r,0) < a(r,0) for |/|< 1, (1.4) yields a better

estimate than (1.5) if | a0 | is so near 1 that

{\-\a0\2)2a(r,0)^a(r,0).

2. Proofs. In the proof of his theorem [1, Theorem 1] MacGregor makes use of the

following improvement of [3, Theorem 4.7, p. 80].

MacGregor's Lemma. Let

g(z) = bQ + b„z"+---        (b„¥0,n>\)

be holomorphic in U, and let rx be the inner radius [3, p. 79] ofg(U) at b0. Then

(2-1) \b„\^rx.
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Proof of Theorem 2. First we prove (1.4), then (1.3). For the proof of (1.4) welet

g(z)=f(rz) = a0 + a„r"z" + ---     in U,

and let rx be the inner radius of g(U) — D(r,0) at a0. Then the estimate (2.1),

together with b„ = a„r", yields

(2.2) KI'"<»V
Let r2 be the inner radius of D (r,0) at a0. Then rx < r2 because D(r,0) C D (r,0);

see [3, p. 80].

Let D* be the circular symmetrization [3, p. 69] of D (r,0) with respect to the

half-line {ta0; 0 < t < +00} (= {'; 0 < t < +00}, if aQ - 0). Then D* is simply

connected because the same is true of D (r,Q). Let h(z) — a0 + cxz + ■ ■ ■ be a

univalent holomorphic function in U with h(U) = D*. Then the inner radius r, of

D* at a0 satisfies r3 = |c,| [3, p. 79], and by [3,Theorem 4.8, p. 81], r2 «s r3, so that,

by (2.2),

|a„k"*='3=|cI| = |Ä'(0)] ,

whence follows

(2.3) r2"[\ a„\/{\-\a0 \2)]2 <\ h'(0) |2/ (l - | *<0) |2)2,

because «(0) = a0.

Since I «' |2/(1 — I « |2)2 is subharmonic in U, and since the non-Euclidean area of

D* is the same as that of D (r, 0), or, a(r, 0), it follows that

\h'(0)\2/(l-\h(0)\2)2^(l/v)ffjh'(z)\2/{l-\h(z)\2)2dxdy

= a(r,0)/iT,

which, together with (2.3), yields (1.4).

To prove (1.3) we consider the composed function

F(w) = f((w + z)/(\ + zw))

of a variable w E U. Since

F<">(0)/«!= (l -\z\2)"f{n)(z)/n\,

F@) = f(z)y and since «(r> 0, F) = a(r, z, f), (1.3) is a consequence of (1.4) applied

toF.

Proof of Theorem 1. The Gauss curvature 7i(z) of the non-Euclidean space U

endowed with the metric u(z) | dz \ is given by

K(z) = -4«x(z)"2(32/3z3z)logjLi(z) =-A   inU.

Let D*(r, z) be the domain bounded by the Jordan curve C*(r, z). Then D(r, z) C

D (r,z)E D*(r, z). Let A be the non-Euclidean area of D\r, z). Then

a(r,z)<A    and   AmA + 4A2 < X(r, z)2;
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the latter is a consequence of [4,(4.25), p.  1206], together with K = -4. Conse-

quently,

2a(r,z)=s(7T2 + A2)1/2-7r.

The estimate (1.1) now follows from (1.3) after a short computation.

3. Schwarz-Pick's lemma. As applications of Theorems 1 and 2 we obtain

improvements of Schwarz-Pick's lemma:

(l-|z|2)|/'(z)|/(l-|/(z)|2)<l,        ZEU.

For example, let

M(r, z) - min(l,0(A(/\ z))/(2trr)),

for 0 < r < 1, z G U. Iff'(z) ¥= 0, then we obtain by (1.1) that

(1 -\z |2) |/'(z) |/(1 -\f(z) |2) <M(r,z),

while if /'(z) = 0, then the estimate is trivial. The estimate in terms of a(r, z) is

similar, and is left as an exercise.

4. Concluding remarks. As to the sharpness of (1.4) on which (1.3) depends we

have poor information: (1.4) is sharp in the limiting case, r -» 0. More precisely, let us

be given « > 1 and a0 E D. We set

T(z) = (z + a0)/ {\ + c7~0z) = a0 + bz + ---,

and

f(z) = T(z")=a0 + a„z"+-..,

where a„ = b. Then, a(r,0) = a(r,0, /) is the non-Euclidean area of A(a0, r")

which is the same as that of A(0, r"), or a(r, 0) = irr2"/(\ — r2"). Since

K,|/(i-KI2)=|z>l/(i-|ao|2)=i,

(1.4) now reads

■nr2" = TTr2"[\a„\/(\ - \ a0 |2)]2 < irr2"/ (1 - r2"),

whence, the fact that 1 — r2" -* 1 as r -> 0 yields the sharpness in the limit.

Now, the situation explained at the end of §1 is obvious for the present/. For,

given 0 < r < 1, we choose a real a0 so that

0<a0<l    and    (l - a¡r2")2 < 1 - r2".

A calculation shows that

a(r,0) = nr2"(\ - a2)2/(\ - a2r2")2,

so that ( 1 - a\ )2«( r, 0) < a( r, 0).

Conversely, given a complex number a0 with 1//2 <|a0|< 1' insn f°r each r

with

0<r<|ao|<l    and    (l - \a0\2r2")2 < \ - r2",
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the same argument as above again shows that

(\-\ao\2)2a(r,0)<a(r,0).
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