STRONGLY EXPOSED POINTS IN BOCHNER LP-SPACES

PETER GREIM

ABSTRACT. We give necessary and sufficient conditions for vector-valued L^p -functions to be strongly exposed in terms of their values (1 .

In this paper we give a characterization of the strongly exposed vector-valued L^p -functions in terms of their values $(1 . In [4] J. A. Johnson has shown that, given a finite positive measure space <math>(\Omega, \Sigma, \mu)$, a Banach space V, an x in $L^p(\mu, V)$ and a g in $L^q(\mu, V')$ (where 1/p + 1/q = 1), then x is strongly exposed by g if the scalar function $||x(\cdot)||$ is strongly exposed by $||g(\cdot)||$ and for almost all t with $x(t) \neq 0$ the value x(t) is strongly exposed by g(t). He left the converse as an open question, but gave a kind of supplement in the case that V has RNP. It is not too obvious that the converse should hold. Namely, a similar characterization of the extremal points is valid for separable V (and Borel measures on Polish spaces [3]), but not in general [2].

We are going to show that the converse *does* hold for Radon measures μ on locally compact spaces, no matter what properties V has (Theorem 2). If V is separable we may even admit arbitrary positive measures μ (Theorem 1). In contrast to the extremal point situation the proof is rather simple.

In this manner we shall have a characterization of strong exposure as a relation between elements of $L^p(\mu, V)$ and $L^q(\mu, V')$; however, this is not yet a characterization of strongly exposed points. We shall give such a characterization under additional assumptions concerning V (Theorems 3 and 4).

Recall that an element x of a normed space X is said to be strongly exposed by an element φ of the dual X' if

- (i) $\varphi x = \|\varphi\| \cdot \|x\| \neq 0$, and
- (ii) each sequence (x_n) in the ball with radius ||x||, such that φx_n converges to φx , converges to x in norm.

For arbitrary functions $x: \Omega \to V$ and $g: \Omega \to V'$ let us denote the functions $t \mapsto \|x(t)\|$, $\|g(t)\|$ and g(t)x(t) by $\|x\|$, $\|g\|$ and $\|x\|$, respectively. χ_A is the characteristic function of the subset A of Ω , and \mathbf{v} is the constant function with value v. $B(v, \varepsilon)$ denotes the closed ball with center v and radius ε .

Received by the editors May 5, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46E40; Secondary 46B20.

Key words and phrases. Bochner L^p -space, Radon measure, separability, smoothness, strongly exposed point.

82 PETER GREIM

Before stating the theorems we make a few observations. Assume $g \in L^q(\mu, V')$ strongly exposes $x \in L^p(\mu, V)$. Then from

$$||g|| \cdot ||x|| = gx = \int \langle x, g \rangle d\mu \le \int |g| \cdot |x| d\mu \le ||g|| \cdot ||x||,$$

we deduce $\langle x, g \rangle = |g| \cdot |x|$ a.e. and, consequently, that $\chi_A g$ strongly exposes $\chi_A x$ for all measurable A with $\chi_A x \neq 0$. Thus, in order to prove the theorems below, knowing that x and g vanish outside a suitable σ -finite set, we may assume without loss of generality that μ is finite. For the same reason we may assume that |x| and |g| are strictly positive. We may also assume w.l.o.g. that the scalars are real, since for complex scalars φ strongly exposes x if and only if the real part $\text{Re} \circ \varphi$ of φ strongly exposes x in the underlying real space.

THEOREM 1. Let (Ω, Σ, μ) be a positive measure space, V a separable Banach space, $1 , <math>x \in L^p(\mu, V)$ and $g \in L^q(\mu, V')$. Then g strongly exposes x if and only if |g| strongly exposes |x| (i.e. $|g|/||g|| = (|x|/||x||)^{p-1}$) and for almost all $t \in \Omega$, g(t) strongly exposes x(t) or y(t) = 0 = x(t).

PROOF. The "if" part is Theorem 1 in [4], where the finiteness of μ is an unnecessary restriction. Now let g strongly expose x. From $\int |g| \cdot |x| d\mu = \|g\| \cdot \|x\|$ and the uniform convexity of $L^p(\mu)$, it is clear that |g| strongly exposes |x|. By the preceding remarks we can assume that |x| and |g| are strictly positive, μ is finite and the scalars are real. For $t \in \Omega$ and $n \in \mathbb{N}$ define the slices

$$S(t, n) := \{ v \in V | \|v\| < |x|(t), g(t)v > (1 - 1/n) \cdot |g|(t) \cdot |x|(t) \},$$

$$d(t, n) := \min \{ \varepsilon > 0 \mid S(t, n) \subset B(x(t), \varepsilon) \},$$

and

$$e(t) := \inf\{d(t,n) \mid n \in \mathbf{N}\}.$$

Observe that g(t) strongly exposes x(t) if and only if e(t) = 0.

First we want to show that e is a measurable function. By the definition of e it is sufficient to show that the functions $d(\cdot, n)$ are measurable, i.e. the sets $\{t \mid d(t, n) > \delta\}$ are measurable for all $\delta > 0$. Fix such a δ . For $v \in V$ define $A_{n,v} := \{t \mid ||v|| < |x|(t), |g(t)v| > (1 - 1/n) \cdot |g|(t) \cdot |x|(t), ||x(t) - v|| > \delta\}$. $A_{n,v}$ is measurable since all the functions involved are measurable (w.l.o.g. μ is a complete measure). Now let D be a countable dense subset of V. Observe that $d(t, n) > \delta$ if and only if $t \in A_{n,v}$ for a suitable $v \in D$. Thus we conclude that $\{t \mid d(t, n) > \delta\}$ is measurable as a countable union of measurable sets.

It remains to show that $\{t \mid e(t) > 0\}$ has measure zero. Assume the contrary. Then there is a $\delta > 0$ such that $A := \{t \mid e(t) > \delta\}$ has positive measure. We want to construct a sequence (y_n) in $L^p(\mu, V)$ such that $|y_n - x| \ge \delta$ on A, $|y_n| \le |x|$ and $\langle y_n, g \rangle \ge (1 - 1/n) \cdot |g| \cdot |x|$ a.e. Then $||y_n|| \le ||x||$, $||y_n - x||^p \ge \mu(A) \cdot \delta^p$ and $gy_n \ge (1 - 1/n) \cdot ||g|| \cdot ||x||$, which means that g does not strongly expose x, a contradiction. To this end let $n \in \mathbb{N}$ and define the sets $A_{n,v}$ as above. Then $A \subset \{t \mid d(t,n) > \delta\} = \bigcup_{v \in D} A_{n,v}$. Hence $A = \bigcup_{m=1}^{\infty} B_m$, where each B_m is a measurable set contained in some A_{n,v_m} , $v_m \in D$. Obviously $y_n := \chi_{\Omega \setminus A} x + \sum_{m=1}^{\infty} v_m \cdot \chi_{B_m}$ has the desired properties. \square

THEOREM 2. Let μ be a Radon measure on a locally compact space Ω , V any Banach space, $1 , <math>x \in L^p(\mu, V)$ and $g \in L^q(\mu, V')$. Then g strongly exposes x if and only if |g| strongly exposes |x| and for almost all $t \in \Omega$, g(t) strongly exposes x(t) or y(t) = 0 = x(t).

PROOF. We proceed as in the proof of Theorem 1; we have to show that $\{t \mid e(t) > 0\}$ is a null set. By Lusin's theorem the restrictions of x and g to suitable compact subsets, whose complements have arbitrarily small measures, are continuous. Thus we may assume w.l.o.g. that x and g are continuous on Ω . Consequently the sets $A_{n,v}$ are open, and so is their union $\bigcup_{v \in V} A_{n,v} = \{t \mid d(t,n) > \delta\}$. This shows the measurability of e.

In order to verify that $\{t \mid e(t) > 0\}$ is a null set, replace the set A in the proof of Theorem 1 by a compact subset with positive measure $(A \subset \{t \mid e(t) > \delta\}, A \text{ compact}, \mu(A) > 0)$ and proceed as above. Then by its compactness A is contained in a finite union of sets $A_{n,v}$, and the functions y_n defined analogously form the desired sequence. \square

Since the dual of $L^p(\mu, V)$ is $L^q(\mu, V')$ if V' has RNP, the following is an immediate corollary from the preceding theorems.

THEOREM 3. Let V' have RNP. Assume that μ is a Radon measure or V is separable. Then for each strongly exposed $x \in L^p(\mu, V)$ almost all values x(t) are strongly exposed or zero.

As mentioned before this is not yet a *characterization* of strongly exposed points in $L^p(\mu, V)$. Namely, given an $x \in L^p(\mu, V)$ such that almost all x(t) are strongly exposed by some $g(t) \in V'$, we do not know whether the g(t)'s fit together in a measurable way. We do, however, if V is smooth.

THEOREM 4. Let V be smooth, μ arbitrary. Then each $x \in L^p(\mu, V)$ with x(t) strongly exposed or zero a.e. is strongly exposed.

PROOF. W.l.o.g. ||x|| = 1. We may choose an $A \in \Sigma$ s.t. $\chi_A x = 0$ and, for all $t \notin A$, x(t) is strongly exposed by some norm 1 functional $g_0(t)$, and a sequence of simple functions x_n , vanishing on A and taking only strongly exposed values outside A (namely, certain x(t)'s), such that $x_n(t) \xrightarrow{n} x(t)$ everywhere. Put $g_0(t) := 0$ for $t \in A$. Since the support mapping $v \mapsto$ norm 1 functional supporting the unit ball in v/||v|| is norm- $\sigma(V', V)$ -continuous on the unit sphere [1, p. 22], hence everywhere on $V \setminus \{0\}$, g_0 is the weak-* limit of a sequence of simple functions, hence weak-* measurable. From this it is easy to see that $\langle y, g_0 \rangle$ is measurable for all $y \in L^p(\mu, V)$ and that $\varphi y := \int \langle y, |x|^{p-1}g_0 \rangle d\mu$ defines a linear functional on $L^p(\mu, V)$ with $\varphi x = 1$ and $\|\varphi\| = 1$. Although $g := |x|^{p-1}g_0$ need not be Bochner measurable, |g| is in $L^q(\mu)$ and the proof of [4, Theorem 1] shows that φ strongly exposes x. \square

Added in proof. We can dispose of the RNP requirement in Theorem 3.

THEOREM 3'. Assume that μ is a Radon measure or V is separable. Then for each strongly exposed $x \in L^p(\mu, V)$ almost all values x(t) are strongly exposed or zero.

84 PETER GREIM

This is a consequence of the facts that 1. any functional φ on $L^p(\mu, V)$ may be regarded as a weak-* measurable function $g: \Omega \to V'$ such that the upper integral $\int_{-\infty}^{\infty} |g|^q d\mu$ equals $\|\varphi\|^q$ and $\varphi y = \int_{-\infty}^{\infty} \langle y, g \rangle d\mu$ [5, p. 97], and 2. that Theorems 1 and 2 are valid also for these g (where the measurability of |g| is implicit in "|g| strongly exposes |x|"). In order to verify the second fact recall that the proof of [4, Theorem 1] shows the sufficiency. If in the paragraph preceding Theorem 1 we replace |g| by a measurable function $f \ge |g|$ such that $|g|^q$ and $|g|^q$ have the same (upper) integral, the arguments of this paragraph prove that $|g|^q$ and $|g|^q$ have the same (again assuming w.l.o.g. that $|g|^q$ are strictly positive) the proofs of Theorems 1 and 2 work, since we only needed that the functions $|g|^q$ ($|g|^q$) and $|g|^q$ and $|g|^q$ are measurable. $|g|^q$

REMARK. Although each strongly exposing g has a measurable norm function |g|, it is not true that g itself is measurable: as $L^p(\mu, l^1)$ has RNP, the strongly exposing functionals are dense in its dual which contains $L^q(\mu, l^\infty)$ as a proper closed subspace because l^∞ lacks RNP (μ not purely atomic).

BIBLIOGRAPHY

- 1. J. Diestel, Geometry of Banach spaces—Selected topics, Lecture Notes in Math., vol. 485, Springer-Verlag, Berlin, 1975.
- 2. P. Greim, An extremal vector-valued L^p -function taking no extremal vectors as values, Proc. Amer. Math. Soc. 84 (1982), 65–68.
 - 3. J. A. Johnson, Extreme measurable selections, Proc. Amer. Math. Soc. 44 (1974), 107-112.
 - 4. _____, Strongly exposed points in $L^p(\mu, E)$, Rocky Mountain J. Math. 10 (1980), 517-519.
- 5. A. Ionescu-Tulcea and C. Ionescu-Tulcea, Topics in the theory of liftings, Springer-Verlag, Berlin,

Mathematisches Institut, Freie Universität, Arnimallee 2-6, D 1000 Berlin 33, Germany

Current address: Department of Mathematical Sciences, Memphis State University, Memphis, Tennessee 38152