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ON GROUP D.G. NEAR-RINGS

S. J. MAHMOOD AND J. D. P. MELDRUM

Abstract. Meldrum has generalized the idea of a group ring and has defined a

group d.g. near-ring for a faithful d.g. near-ring (R, S) on a multiplicative group G.

In this paper we generalize this idea even further and define a group d.g. near-ring

for an arbitrary d.g. near-ring. We also prove some results about the additive group

of this d.g. near-ring similar to those proved by Meldrum for a group d.g. near-ring

of a faithful d.g. near-ring.

1. Preliminaries. A set R, together with two binary operations + and •, is called a

(left) near-ring if:

(i) (R, +) is a group (not necessarily abelian);

(ii) (R, • ) is a semigroup;

(iii) x(y + z) = xy + xz for all x, y, z E R.

An element d E Ris called distributive if (x + y)d = xd + yd for all x, y E R. The

subset D of distributive elements forms a subsemigroup of (R, •).

R is called a distributively generated (d.g.) near-ring if (R, + ) is generated by a

distributive semigroup S which is not necessarily the whole set of distributive

elements of R. A d.g. near-ring is denoted by (R, S). We call 6: (R, S) -* (T, U) a

d.g. near-ring homomorphism if 0: (R, +) -» (T, +) is a group homomorphism and

8: (R, •) -► (T, •) is a semigroup homomorphism such that S6 E U. A semigroup

homomorphism 6: S -* U is a d.g. near-ring homomorphism from (R, S) -* (T, U)

if and only if it is a group homomorphism from (R, +) to (T, +). From now on we

will use the term homomorphism for a d.g. near-ring homomorphism unless other-

wise stated.

If, for a group G, 0: (R, S) -» (E(G), End G) is a homomorphism, then 6 is called

a d.g. representation of (R, S) on G. Here E(G) is the d.g. near-ring of mappings

from G to itself generated by End G, the set of all endomorphisms of G. A d.g.

near-ring is called faithful if it has a faithful d.g. representation, i.e., Ker 6 = {0}.

Not all d.g. near-rings are faithful [3]. (R, S) is faithful if and only if an identity 1

can be adjoined to R such that the elements of S remain distributive in the bigger

d.g. near-ring [5]. However, with every d.g. near-ring we can associate two faithful

d.g. near-rings (Meldrum [3], Mahmood [2]). The upper faithful d.g. near-ring for

(R, S) is a faithful d.g. near-ring (R, S) together with an epimorphism 0:

(R, S) -** (R, S) such that (i) d\s= ls, (ii) if <:>: (T, U) -» (R, S) is a homomor-

phism, where (T,U) is faithful, then there exists a unique homomorphism ^:

(T, U) -* (R, S) such that \\>B = <i>. The lower faithful d.g. near-ring for (R, S) is a
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faithful d.g. near-ring (R, S) together with an epimorphism 6: (R, S) -*+ (R, S)

such that (i) SO = S, (ii) if <j>: (R, S) — (T, U) is a homomorphism, where (T, U) is

faithful, then there exists a unique homomorphism ip: (R, S) -> (T,U) such that

We will be using the following two results from [3]. For each (R, S) group H,

Ker0 C AnnR H. Let XÇ/!, where (R, S) is a d.g. near-ring. Then Id (A"), the

ideal generated by X, is the normal subgroup of (R, + ) generated by RXS =

{rxs, rx, xs, x; r E R, x E X, s E S). We now* present basic facts about d.g. near-

rings taken from [4]. Let (R, S) be a faithful d.g. near-ring and let G be a

multiplicative group. Let X be any set, Y = X X G = {(x, g); x E X, g E G), and

F = Fr(F, R, S) be the free (R, S) group on the set Y [3]. Then by means of right

regular representations, G can be defined as a group of (R, S) automorphisms of F.

So the semigroup SG = {sg; s E S, g E G) of endomorphisms of F generates a d.g.

near-ring (R(G), SG) in E(F). This d.g. near-ring is defined to be the group d.g.

near-ring of (R, S) on G. Also rg — gr in R(G) for all r E R, g E G. F is the free

(R(G), SG) group on the set X and (R(G), +) considered as an (R, S) group is an

orthogonal sum of its (R, S) subgroups {Rg; g E G).

The idea of an orthogonal sum comes from Fröhlich [1]. If [Hx; À G A) is a

family of (R, S) groups, then H is an orthogonal sum of [Hx; À G A} if it is an

(R, S) group, and (R, S) homomorphisms etx, ßx exist for all À G A such that otx:

Hx -* H, ßx: H -» Hx and a^ is the identity map on Hx if X = p, and is the zero

map otherwise. Note that  this  forces otx  to be a monomorphism and ßx  an

epimorphism for all X G A. We add the condition that H — Gp(Hxotx; X E A).

Fröhlich calls this a covered orthogonal sum. This is equivalent to saying that there
e       <t>

exist homomorphisms 0, <¡>*       i/A-> #-» ®\e\H\> where * indicates the free

(R, S) product, © indicates the direct sum, and 8, <j> are epimorphisms which

respect the injection of Hx -» *       Hx and the projection ©X(=A Hx -» Hx.A (E A A fc A

2. The group d.g. near-ring. Let (R, S) he an arbitrary d.g. near-ring and G a

multiplicative group. Let (R, S) be the upper faithful d.g. near-ring for (R, S)

together with the natural homomorphism 6: (R, S) —-> (R, S). Since (R, S) is

faithful we can construct (R(G), SG). Let / = Kerf? and IG = {ag; a E I, g E G).

Denote by / the ideal Id(/G). By the remark above, J is the normal subgroup of

(R(G), +) generated by

R(G)IGSG = {(2r,gl)(ag)(sh),(2r,g,)(ag),(ag)(sh), ag;

2rigi E R(G), aEl,sES,g,hEG).

Using results about R(G) from [4], we have

R(G)IGSG = {(Slftia*), "g; %rigi G R(G), aEl,gEG}

since / is an ideal of R.

Definition 1. (R(G), SG)/J is called the group d.g. near-ring of (R, S) on G.

Without danger of confusion we may denote it (R(G), SG), as we will see later

that SG + J/J is naturally isomorphic to SG. The following generalization of
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Fröhlich's result—if (R, S) is a d.g. near-ring and H is an 5 group, then H is an

(R, S) group provided Ker it E AnnFr(S) H, where it is the natural homomorphism

from the free d.g. near-ring (Fr(S), S) on S to (R, S)—is needed for our first result.

Lemma 2. Let <j>: (R, S) -»-» (7", t/) be an epimorphism, and let H be an (R, S)

group which is also a U group. Then H is a (T,U) group if Ker $ E AnnR H.

Proof. Let \p be the representation of (R, S) on H. By the hypothesis, Ker<j> Ç

Ker \p. Hence \\> factors through <j> giving a representation of (T, U) on H.

Theorem 3. (R(G)/J, +) is an (R, S) group.

Proof. Clearly (R(G)/J, +) is an (R, S) group. Let 2/-g, + JE R(G)/J, a El.

Then

since a E I and J D IG. Therefore / Q AnnR(R(G)/J). Hence (R(G)/J, +) is an

(R, S) group by Lemma 2.

We note that

(R(G)/J,+)= Gp((Rg + J)/J;gEG),

where each (Rg + J)/J is an additive subgroup of R(G)/J. Moreover, the groups

{(Rg + J)/J; g E G) can be considered as (R, S) groups in a natural way, as in

Theorem 3.

We now look at the relationship of (R(G), SG) to (R(G), SG). Let (R, S) be the

lower faithful d.g. near-ring for (R, S) together with the natural homomorphism 8:

(R, S) -w (R, S). Then as before we can construct the group d.g. near-ring

(R(G), SG) which is a sub-d.g. near-ring of (£(£), End F), where/ = Fr(7, R, S),

the free (R, S) group on Y. Let F= Fr(T, R, S) he the free (R, S) group on K

Clearly, (R(G), SG) is a sub-d.g. near-ring of (E(F), End F). By the freeness of F

there exists a unique (R, S) homomorphism p: F -** F which extends the identity

map on Y. Note that since (R, S) is a homomorphic image of (R, S) under 88, F is

an (R, S) group in a natural way. We have

((x, g)r)p = (x, g)(r88)    for all (x, g) G Y, r G Ä.

Lemma 4. a: SG -+ SG defined by sg -* (s88)g extends to a homomorphism from

(R(G), SG) to (R(G), SG).

Proof, a is certainly a semigroup homomorphism SG -» 5G, so we need only

check that it extends to a group homomorphism (R(G), +) -* (Ä(G), +), which we

will also denote by a.

Let r = e^g, + • • • +ensngn = 0 in R(G), where e, = ± 1, s¡ E S, g, G G. Then

ra = ex(sx88_)gi +■■■ +eB(sa<W)g„

has to be shown to be 0 in R(G). Since F is the free (R(G), SG) group on

{(x, 1); x G X), we need only show that (x, l)r — 0 for all x E X. But (x, \)r = 0



382 S. J. MAHMOOD AND J. D. P. MELDRUM

for ail x G X in F. Hence

0 = ((x, \)r)p = ((x, l)(e,5,g, + • • • + ens„g„))fi

= (e,(*, g,)j, + • • • +e„(x, /jJîJm

= (e,(x, gx)sx)p + ■ ■ ■ +(£„(x, g„)sn)fi    since p is a homomorphism

= e1(x,g1)(il^) + ---+£n(x,gj(i„^)

= el(x,i)(Siee)gl + --+EH(x,i)(smee)gH

= (x, l)(ei(SlO0)gl + ■■■ +e„(s„88)gn) = (x, l)(ra).

This suffices to prove the result.

Theorem 5. (R(G), SG) is a homomorphic image of (R(G), SG)/J.

Proof. It suffices to show that J C Ker a. Let ag E IG. Then (ag)a = (a88)g =

(08)g - 0 in R(G). Hence IG E Ker a, and so J E Ker a, since J = Id(/G> and

Ker a is an ideal.

We thus have the following commutative diagram:

(R(G),SG) -1— (R(G),SG)/J

(R(G),SG)  «^ ß

Here m is the natural homomorphism. Note that ß is uniquely defined.

We now wish to show that (R(G), SG) is an orthogonal sum of (R, S) groups

(Rg, +) each isomorphic to (R, +).

Theorem 6. (R(G), SG)/J is an orthogonal sum of (R, 5) groups (Rg, +) each

isomorphic to (R, +).

Proof. Consider the following diagram:

Rg     5       (R(G),SG)        t      ®Rg     -     Rg

l&g 4 it 16 10g

Rg     -     (R(G),SG)/J     -       ®Rg     -     Rg
ss t>       gee y*

Rg is an (R, S) group, hence an (R, S) group, which is isomorphic to (R, +) and

whose elements are {rg: r G R}. The maps 8g, 8, 8g are the obvious (R, S) homo-

morphisms induced by 8. Note Ker0g = /g, KerfJ= ©„eG/g- Finally w is the

canonical homomorphism, a , ßg and \p are the maps arising from the orthogonal

sum properties of R(G), and yg are the usual projections. We wish to show the

existence of homomorphisms 8g, <j> making the diagram commutative. Note that the

right-hand square is commutative, as can be seen from the definitions of the maps.

So ßg8g = 8\.
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Consider Ig C R(G) for some g G G. Then (Ig)*P G Ig E RG E <$gecRg, from

the definition of \p. Hence (Ig)-p E Ker 8. This holds for all g G G. Thus IG E

Ker 418. Since Ker i¿>0 is an ideal, it follows that J = Id</G) E Ker »//0. So t^f? factors

uniquely through it, i.e., there exists <#>: (R(G), SG)/J -» ©gec #g such that 77<f> = >//0

and <j> is unique. So <J> exists and the middle square is commutative. It follows that

Ker 7t<j> n Rg = Ig. This leads to the following result, which we state separately.

Lemma 7. In R(G), Rg n J - Ig for all g EG.

We return to the proof of Theorem 6. Consider agw. By the definition of

orthogonal sum, ag is a monomorphism. So

Kerag77 = ag'(Ker7r n ImoJ = agx(J n Rg) = Ig E Rg

by Lemma 7. But Ker#g = Ig. So there exists a unique monomorphism 5g: Rg -»

(_R(G), SG)/7 such that 0gôg = ag7r. In particular, ôg: ÄG - Rg + 7/7. Also, <j>:

Rg + J/J -» Äg Ç ©gSC Äg. The complete diagram is commutative and

(R(G), SG)/J is an orthogonal sum of the groups Äg + J/J, each of which is

isomorphic to (R, + ).

Corollary 8. (Rg + J)/J s (Rg, +) s& (R, +) ai (Ä, 5) growp /or eoc/t g G G.

Note that Lemma 7 implies that 7 fl SG is trivial and, hence, that SG + J/J ~ SG

as a semigroup. So we can write (R(G), SG) for (R(G), SG)/J, and we can identify

SG + 7/7 with SG, Rg + J/J with Rg for each g G G.

We note that for any group d.g. near-ring (R(G), SG), the subnear-ring (RlG, Slc)

is naturally isomorphic to (R, S). Since a sub-d.g. near-ring of a faithful d.g.

near-ring is faithful, it follows that if (R, S) is not faithful, then neither is

(R(G), SG) for any group G. We do have a faithful d.g. near-ring with a projection

on to (R(G), SG), namely tt: (R(G), SG) -* (R(G), SG). We also have a faithful

d.g. near-ring which is a homomorphic image of (R(G), SG), namely ß: (R(G), SG)

-» (R(G), SG). We now relate these to the upper and lower faithful d.g. near-rings

for (R, S).

Theorem 9. Let <p: (U, SG) -* (R(G), SG) be the upper faithful d.g. near-ring for

(R(G), SG). Then (U, SG) is an orthogonal sum of the (R, S) groups {(Rg, +); g G

G} and the canonical homomorphism \p: (R(G), SG) -» ([/, SG) such that \p<p — it

respects the orthogonal sum structure.

In Fröhlich's notation, \p is an orthogonal homomorphism.

Proof. Consider the following commutative diagram:

(R(G),SG)   ^L^(R(G),SG)

where all the maps are epimorphisms and restrict to the identity on SG. Denote by

(Tg, Sg) the sub-(Ä, S) group of (U, +) generated by (Sg)\p, which we identify with

Sg. Then (7TG, SlG) is a d.g. near-ring. It is faithful, as it is a sub-d.g. near-ring of a
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faithful d.g. near-ring. From the properties of upper faithful d.g. near-rings, it

follows thatÇTlG, Slc) ^ (RlG, SlG). Hence, (Tg, Sg) = (TlG, SlG)_g ̂  (Rg, Sg).

Further, \p: Rg -» Tg and is the identity on S g -* Sg. Thus Ker \p n Rg = {0}. This

leads to an embedding of (Rg, Sg) in (U, SG) for each g G G.

We now need projections of (U, SG) onto (Rg, Sg) for each g G G. With a

change in notation, we use the proof of Theorem 6 to obtain the following

commutative diagram:

(R(G),SG)      -     Rg

(Í/.SG)      *       (R(G),SG)      *     Äg

For g = lc we have a map <j>y,: (Í7, SG) -» RlG, and ¿>y, maps (71G, Slc) -*

(RlG, SlG). As before, it follows that (¡>yx restricted to 71G factors through 8X:

RlG -» 7?1G, using the properties of upper faithful d.g. near-rings. Now right

multiplication by g maps 71G to 7g and Rlc to Rg. Hence, <pyg always factors

through 8g, when restricted to 7g. This finishes the proof of the result.

Theorem 10. Let <j>: (R(G), SG) -» (U, SG) be the lower faithful d.g. near-ring for

(R(G), SG). Then (Ü, SG) is an orthogonal sum of the (R, S) groups {(Rg, + ); g E

G} and the canonical homomorphism \p: (U, SG) -* (R(G), SG) such that ß = <p\p

respects the orthogonal sum structure.

Proof. The proof parallels that of Theorem 9 fairly closely. So we will only give

an outline. Consider the following commutative diagram:

(R(G),SG) >(R(G),SG)

4 l^
iU,SG)   ^

Denote by (Tg, Sg) the sub-(Ä, S) group of (U, +) generated by (Sg)<3>. Consider-

ing first 71G, we see as before that (7J1G, Slc) s (RlG, SlG). This justifies the

assumption made in the statement of the theorem that (SG)<¡> = SG. Using right

multiplication by g gives us (Tg, Sg) = (Rg, Sg), and we have the embedding of

(Rg, Sg) in (U, SG) for each g G G.

For the second part, we have an easier situation. From above, we know that \p

respects the embeddings. Since (R(G), SG) is an orthogonal sum of {(Rg, Sg); g E

G), and (U, SG) is mapped onto it by a homomorphism \p respecting the embed-

dings, it follows that (U, SG) is an orthogonal sum of {(Rg, Sg); g E G], and \p

respects the orthogonal sum structure.

The next theorem follows immediately.

Theorem 11. If (R(G), SG) is the free (R, S) sum of {(Rg, Sg); g E G), then ß:

(R(G), SG) - (R(G), SG) is the lower faithful d.g. near-ring for (R(G), SG).
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_If (U, SG) is the free (R, S) sum of {(Rg, Sg); g E G), then it: (R(G), SG) -

(R(G), SG) is the upper faithful d.g. near-ring for (R(G), SG), and (R(G), SG) is

the free (R, S) sum of {(Rg, Sg); g E G}.

The concrete determination of the upper and lower faithful d.g. near-rings for a

given d.g. near-ring is difficult and involves a good deal of group theory in the form

of group presentations in all cases covered so far. The case of lower faithful d.g.

near-rings has been treated in [5] and that of upper faithful d.g. near-rings in [6]. In

[6] the near-rings considered in detail are the zero near-rings on the finite dihedral

groups. The smallest example of a group d.g. near-ring, namely (R(G), SG) for

(R, + ) the dihedral group of order 6 and G the cyclic group of 2, needs a very

sophisticated group theoretic treatment, as anyone who consults [5 or 6] can see. So

we are not in a position to give details here. But we hope to examine this situation in

some detail in a later paper.

There are some interesting questions which arise from the last two theorems.

When is (R(G), SG) the upper faithful d.g. near-ring for (R(G), SG)1 And when is

(R(G), SG) the lower faithful d.g. near-ring for (R(G), SG)? These seem to be hard

questions whose answer will depend on a detailed knowledge of the structure of the

corresponding groups. This is also true of the problem of giving an "interval"

characterization of (R(G), SG), that is, one that does not involve going through

(R,S).
Finally, a comment about group near-rings for arbitrary near-rings: The structure

of a group near-ring is closely related to the free near-ring-module product. In the

case of a zero-symmetric near-ring, this product exists, as general theorems about

free products in varieties assure us. But detailed structural results are only emerging

now, and they lead to a very complicated structure. Again it is hoped that these

results will be followed up at a later stage.
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