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A REMARK ON THE IMAGE OF THE AHLFORS FUNCTION

AKIRA YAMADA

Abstract. Let ñ denote a planar maximal region for bounded holomorphic func-

tions and/7 G Ü. By an example we show that the complement in the unit disc of the

image of the Ahlfors function for Ü and p can be a fairly general set of logarithmic

capacity zero.

1. Introduction. Let S2 be a planar region that supports nonconstant bounded

holomorphic functions and let p E Q. Set B — [f\f is holomorphic in Q, and

f(Q) ED] where D = {z||z|<l}. The Ahlfors function for ñ and p is the unique

function F in B such that

F'(p) = max Re/'(/>)•

It is elementary to show that F(p) = 0. This paper is concerned with the image F(ü)

of the Ahlfors function.

Havinson [3] and Fisher [2] demonstrated that D\F(Q) has analytic capacity zero.

We assume that the region S2 is maximal for bounded holomorphic functions in the

sense of Rudin [8], since for nonmaximal regions the question about the size of

D\F(U) is trivial [5]. Recently, Minda [5] constructed an example of maximal

regions showing that D\F(U) can be a fairly general discrete subset of D. We shall

extend Minda's result by showing that the image F(ß) can omit a fairly general set

of logarithmic capacity zero.

The author wishes to thank the referee for his helpful comments on the original

version.

2. The example. The following construction is due to Minda [5]. Now we recall his

basic construction in a slightly modified form.

Let A: be a compact subset of D such that Cap(K) = 0, K n R = 0 and K = K,

where Cap(K) denotes the logarithmic capacity of K and K the reflection of the set

K in the real axis. Set A = D\K and A+ = A n H, where H = {z | Im z > 0}. Let/:

H -» A+ be an analytic universal covering of the lower half-plane H onto A+ . Let T

be the associated group of cover transformations. T is a Fuchsian group of the

second kind consisting of all Möbius transformations T which map H onto itself and

satisfy f° T = f. Since (-1,1) is a free boundary arc of A+ , there is an open set o

contained in the extended real line R U {oo} such that / extends continuously to

Received by the editors July 21, 1982 and, in revised form, September 13, 1982.

1980 Mathematics Subject Classification. Primary 30C75, 30C85.

Key words and phrases. Ahlfors function, logarithmic capacity.

©1983 American Mathematical Society

0O02-9939/82/O0O0-0963/$01.75

639



640 AKIRA YAMADA

H U a and / maps each component of a homeomorphically onto (-1,1). Without

loss of generality, we may assume that oo G a and that /(oo) = 0. Let ax be the

component of a that contains oo. We extend / to a holomorphic function on

£2 = H U a U H by means of the Schwarz reflection principle: f(z) =/(z). We

continue to denote the extended holomorphic function by/. It is elementary to verify

that /: Í2 -» A is an analytic covering, that /'(oo) > 0 and that the group of cover

transformations associated with this covering is exactly I\

3. The Ahlfors function of fi.

Lemma l. il is a maximal region for bounded holomorphic functions.

Proof. See the proof of Proposition 1 in [5].

We are going to show that /: ß -> A is the Ahlfors function for Í2 and oo.

Let E = R\o\ Then £ is a compact subset of R and T(E) = E for all T E T. If F

denotes the Ahlfors function for Q and oo, a result of Pommerenke [6] implies that

(1) F(z) = tanh g(z),

whereg(z) = i/£^/(z-n-

Let L be the limit set of T and denote by m(L) its one-dimensional Lebesgue

measure. Note that L is closed and invariant under T.

Lemma 2. m(L) = 0.

Proof. Let u(z) be the harmonic measure of L in H. By the reflection principle

we may assume that u(z) is defined on (C U (oo})\L and is harmonic there. Since

L is invariant under V and u(z) is bounded, u(z) projects via the covering / to a

bounded harmonic function U(z) in A = D\K. It follows from the assumption

Cap(/C ) = 0 that U(z) extends to a harmonic function on D [9, p. 261]. Since the

boundary value U(e'e), 0 =£ 0 < 2tr, vanishes everywhere, we see that U(z) = 0 in

D. Thus u(z) = 0 in H, which implies that m(L) = 0.

Let E' = E\L and let E0 be a measurable fundamental set of E'. Then m(E') =

m(E) and E' — UTeTT(EQ) (disjoint union). Noting that T is of convergence type

and oo is an ordinary point, we have

(2) ^ = \S,T^t = \S^!-S)dS

where the Poincaré series

converges uniformly and absolutely on compact subsets of C\L after possibly

omitting a finite number of terms. For z G C\L, h(z, • ) is a meromorphic automor-

phic form on C\L of weight -2 for T with at most simple poles at f G Tz. For

Ç E C\L,h(- ,Ç)is a meromorphic Eichler integral on C\L of order 0 with at most

simple poles at z G Tf [4, p. 221]. Here we remark that in his book [4], Kra restricts

himself to stating the above results only in the case of weight -2q with q > 2. It is,
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however, easily seen that if T is a Fuchsian group of convergence type, these results

continue to hold in our present case q = 1.

Lemma 3. h(Tz,Ç) = h(z, f) for all T E Y, z E C\L and f G C\L.

Proof. First assume that z G H and f G H. Then we have the following identity:

for all <p E A2(T) and T E T,

(3) nj%« = //*■ [A(7T, • ) - ~kU~j] did-q

where A2(T) denotes the space of square integrable holomorphic automorphic forms

of weight -2 for T and w is a fundamental domain for T in H whose boundary has

(two-dimensional) Lebesgue measure zero. We remark that A2(T) is a Hilbert space

and h(Tz, ■) — h(z, ■) belongs to A2(T). The identity (3) is a variant of the one

obtained in the work of Rao [7, Theorem 2] and is proved analogously. Hence we

omit the proof. On the other hand, by using the fact that if K is a compact subset of

C with logarithmic capacity zero and U is an open set with K E U, then every

analytic function in AL2(U\K) has an analytic extension to U [Lp. 483], we have

the isometries

A](T) =AL2(A+) s,AL2(D n H),

where AL2( X) denotes the space of square integrable holomorphic functions on X.

Note that all periods of any function <p eAL2(D fl H) vanish, since D fl H is

simply-connected. Observing that the left side of (3) represents a " period" along the

loop associated to T E T, we find that h(Tz, ■ ) - h(z, ■ ) is orthogonal to A2(T),

concluding that foxzEH and f G H, h(Tz, f ) = h(z, f ). Analytic continuation

now yields Lemma 3.

It is clear from the above lemma, (1) and (2) that the Ahlfors function F(z)

satisfies

F°T=F   for all T G T.

Proposition. The analytic covering projection f: U -* A is the Ahlfors function for fi

and oo.

Proof. Lemma 3 shows that the Ahlfors function F is invariant under the group

T. This easily implies that F induces a holomorphic function F: A -* D such that

F — F o f and F(0) = 0. Since the condition Cap( K ) = 0 implies that K has analytic

capacity zero, the bounded holomorphic function F has an extension which is a

holomorphic self-map of D [9, p. 261]. Hence Schwarz's lemma yields that F'(oo) =

F'(0)f'(oo) </'(oo). On the other hand it is clear that F'(oo) >f'(oo). This gives

f — F since the Ahlfors function is unique.

Remark. It is still an open question whether the Ahlfors function for a maximal

planar region can actually omit a set of analytic capacity zero.
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