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ON FUNCTIONS THAT APPROXIMATE RELATIONS

GERALD BEER

Abstract. Let X be a metric space and let Y be a separable metric space. Suppose R

is a relation inA'X Y. The following are equivalent: (a) for each e > 0 there exists/:

X — Y such that the Hausdorff distance from / to R is at most e; (b) the domain of

R is a dense subset of X, and for each isolated point x of the domain the vertical

section of R at x is a singleton; (c) for each £ > 0 there exists/: X -» Y of Baire class

one such that the Hausdorff distance from / to R is at most e.

Let (X, dx) and (T, dY) be metric spaces. By a relation R in X X Y we mean a

nonempty subset of the product. Let us make X X Y a metric space by defining the

distance p between points (xx, yx) and (x2, y2) in the product by

p[(xx, yx),(x2,y2)] = max{dx(xx,x2), dY(yx,y2)).

A function /: X -» y will be said [3] to e-approximate R if each point in / has

p-distance at most e from some point in R, and each point of R has p-distance at

most e from some point in /. Alternatively, / can be called [2] an e-approximate

selection for R, although this terminology has been used differently by Michael [7]

and Deutsch and Kenderov [4]. More formally, if/is an e-approximate selection for

R, then/has Hausdorff distance at most e from R. We now pause to describe this

notion.

Let Wbe a metric space. For each point w in Wlet Se[w] denote the open ball of

radius e with center w in W. If C E W denote UwfECSF[w] by Se[C]. If K is another

set in W and there exists e > 0 for which both SF[C] D K and SF[K] D C, then the

Hausdorff distance 5 between C and K is given by

8[C, K] = inf{e: St[C] D Kand SF[K] D C).

If no such e exists, we write 8[C, K] = oo. Further information on this notion of

distance can be found in Aubin [1], Kuratowski [6], or Nadler [9]. Now if 8 denotes

Hausdorff distance in A' X F as induced by p and R is a nonempty subset of X X Y

and /: X -> Y, then the symbol 8[f, R] makes sense, and it is clear that (i) if /

e-approximates R, then 8[f, R] < e; (ii) if 8[f, R] < e then / ^-approximates R for

each 6 > e.

The main purpose of this note is to characterize for arbitrary X and separable Y

those relations in X X Y that admit for each e > 0 a Borel e-approximate selection.

We shall in fact show that the existence for each e > 0 of an e-approximate selection

Received by the editors August 18, 1982.

1980 Mathematics Subject Classification. Primary 41A65, 54C65, 54B20; Secondary 54C50.
Key words and phrases. Approximate selection, Hausdorff metric, functions of Baire class one.

©1983 American Mathematical Society

0OO2-9939/82/0OO0-1297/$02.50

643



644 GERALD BEER

(Borel measurable or not) for the relation implies the existence for each e > 0 of a

Baire class one e-approximate selection.

Definition. Let X and Y be metric spaces. A function /: X -* Y is said to be of

Baire class a < ß if for each open subset G of y the set f~](G) is of additive class a

mX.

In particular, /: X -* Y is of Baire class one if the inverse image of each open

subset of y is an F0 subset of X. For a thorough discussion of such functions, the

reader should consult Kuratowski [6], where the functions of Baire class a are called

B-measurable of class a. We need two results from this source, which we state as

lemmas. The first is not deep; the second is a serious theorem of Montgomery [8].

Lemma A. Let X and Y be metric spaces. Suppose {A¡: i G Z+ } is a collection of

sets each of additive class a with union X. Suppose f: X -» Y and for each i E Z+ the

restriction of f to A¡ is of Baire class a. Then f is of Baire class a.

Lemma B. Let X be a metric space and let F E X. Suppose for each x E X there

exists an open neighborhood Vx of x such that F D Vx is of additive class a. Then F

itself is of additive class a.

Since open sets in a metric space are Fa sets, the phrase "F n Vx is of additive

class a" used in Lemma B is unambigous: subsets of Vx that are of additive class a

with respect to the relative topology on Vx are precisely those that are of additive

class a with respect to the topology on X. In the sequel we shall use the following

notation for the domain and vertical section at x of a relation Rin X X Y:

Dom(Ä) = {x: for some;/, (x, y) E R),    R(x) = {y: (x, y) E R].

Theorem 1. Let X be a metric space and Y a separable metric space. Suppose R is a

relation in X X Y. The following are equivalent.

(a) For each e > 0 there exists f: X -» Y such that 8 [f, R]< e.

(b) The domain of R is a dense subset of X, and for each isolated point x of the

domain the section R(x) is a singleton.

(c) For each e > 0 there exists f: X -» Y of Baire class one such that 8[f, R] < e.

Proof, (a) -* (b). Suppose that Dom(7?) ^ X. Then there exists x E X and e > 0

such that SF[x] n Dom(tf) = 0. It follows that if /: X -> Y is arbitrary, then

f £ Se[R], whence 8[f, R] 3* e. Suppose now that Dom(Ä) = X, but for some

isolated point x of Dom(.R) the section R(x) contains two distinct points .V] andy2

of y. Since x must be an isolated point of X, there exists e > 0 such that both

dY(yx, y2) > e and Se[x] = {x}. Hence iff: X — Y satisfies 8[f, R] < e/2 we must

simultaneously have dY(f(x), yx) < e/2 and dY(f(x), y2) < e/2, an impossibility.

(b) -» (c). If X has no limit points, then Dom(Ä) = X and each vertical section of

R is a singleton. Thus, R is a continuous function, and there is nothing to prove.

Otherwise, let 0 = e/2 and let L denote the set of limit points of X. Consider the

family ß of subsets S of L with the following property: for each {x, z) E S,

dx(x, z) > 6. If ß is partially ordered by inclusion, then by Zorn's lemma ß has a

maximal member, say, {x¡: i G /}, and it easily follows that L C UjeISe[x¡]. Let
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C — {y„: n E Z+ } be a countable dense subset of Y, and for each i E I choose

y„U) E C whose distance from U {R(x): x E Sg[xt] n Dom(Ä)} is less than 6.

Since W = Ui<E¡Sff[x¡] as a subspace of X is paracompact and regular, there is an

open refinement {Vx: À G A} of the cover {Sfl[xJ: i E 1} of W such that {Vx:

À G A} is a locally finite (closed) refinement of {5fl[jc,-]: ; G /}. Let E =

UiEfSe/3[x¡]. We first define a Baire class one function on this open subspace of X.

Let / G / be arbitrary. Since x¡ is a limit point of X, there is a sequence {xni} of

distinct points in 5,fl/3[xI] convergent to x¡. We define h{. Se/3[x¡] -* Y as follows:

let h¡ map [xm: n G Z+ } onto a dense subset of U {R(x): x E Se[x¡] n Dom(R)},

and let h¡ assign to each remaining point of Se/3[x¡] the point yn,ty Functions with

countable domains are automatically of Baire class one; so h¡ \ {x„¡: n E Z+ } and

h¡ | Sg/^Xj] — {xni: n E Z+ } are both of Baire class one. Since the set {x„¡:

n E Z+ } and its complement in Se/3[x¡] axe both Fa sets, Lemma A implies that /.,

itself is of Baire class one. Now set h = U¡eIk¡. By the construction of [x¡: i G /},

it is clear that h is a well-defined function from E to Y. Since the inverse image of

each open set under h is locally an Fa set, Lemma B ensures that h is of Baire class

one.

We next define a Baire class one function on W — E. For each A G A choose

i(\) E I such that Vx E Se[xi(X)]. For each x E W — E let g(x) = y„(i(X)) where

n(i(X)) is the smallest integer such that x E Vx. We claim that for each m E Z+ the

set g~\{yx, y2,... ,ym)) is a relatively closed subset of W — E. To see this let {wk)

be a sequence in g~l({yx, y2,. ■ ■ ,ym}) convergent to some point w of W — E. Since

[Vx: X E A} is locally finite there exist indices {Xx,\2,...,Xp} CA and an integer

K such that for each k > K, {X: X E A and wk E Vx} C {A,, A2,... ,Xp}. Now for

each k> K there exists X(k) E {A,, A2,... ,Xp} such that wk E VX(k) and n(i(X(k)))

< m. Since {Xx,X2,...,Xp} is finite, there exists A G {A,, A2,...,A } for which

w E Vx and n(i(X)) < m. This establishes the claim. Since the intersection of a

closed set with an open set is an Fa set, for each m 3= 2,

z-\{ym}) = 8-x({y\,...,ym})-K-\{y\,...,ym-\})

is a relatively Fa subset of W — E. Hence for each open set G of y the set

g'\G) = g~\C n G) is a relatively Fa subset of W - E, and it follows that g:

W' — E -> y is of Baire class one.

On A' — W the relation Ä reduces to a continuous function. Since the sets E,

W — E, and X — W are each Fa subsets of X, by Lemma A the function /: X -> Y

defined by

/(*) =

h(x)     ifx EE,

g(x)     ûxE W- E,

R(x)     iîx EX- W

is of Baire class one. It remains to show that 8[f, R]< e — 26. We first show that

each point in/is within e of some point in R. If x E X — W then (x, f(x)) E R. If

x E W — E then there exists i E I such that x E Sff[Xj] and f(x) — y„U). However,

by the definition of ynlj) there exists a point xf in S^xJ and a pointy G R(xf) for
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which dY(y, y„(i)) < 6. It follows that p[(x, f(x)),(xf, y)] < max{20, 0} = e. Fi-

nally, if x E E then there exists / G / such that dx(x, x¡) < 0/3; moreover, f(x) is

either y„(i) or a point in U {R(z): z E Se[x¡] n Dom(Ä)}. In either case (x, f(x))

has p-distance less than e from some point (x*, y), where xf E Se[x¡] and y E R(xf).

We now must show that each point of R is within e of some point of /. If

x E X- W then R(x) is a singleton and R(x) = f(x). Next let x E W n Dom(Ä)

and choosey G R(x). There exists i E I such that x E Se[x¡\. Recall, however, that

{f(xni): n E Z+} is dense in U [R(z): z E Sff[xt] n Dom(Ä)}, so there exists

n E Z+ for which dY(f(x„,), y) < e. Again, it is clear that p[(x, y),(x„„ /(*„,))] <

e, and this portion of the proof is complete.

(c) -» (a). Obvious.

Theorem 1 fails without the separability assumption on Y.

Example 1. Let X be the rationals, viewed as a subspace of the line with the usual

topology, and let Y be an uncountable set with the discrete metric. Let R = X X Y.

Now each /: X -» Y has a countable range, and it follows from the definition of the

metric ponA'X Y that 8[f,R]= 1.

Following Michael we could call /: X -* Y an e-approximate selection for a

relation R with domain X if, for each x in X, f(x) E SF[R(x)]. The existence of Baire

class one approximate selections in this context would seem to rest on some

continuity requirement on the map x -* R(x). For example, the property of almost

lower semicontinuity, due to Deutsch and Kenderov [4], is sufficient [2]: for each x in

X there exists a neighborhood Vx of x such that D {5e[Ä(w)]: w E Vx) is nonempty.

Example 2. Let X = Y = [0,1] and let B be a non-Borel set in the interval. Let

R E X X Y be the characteristic function of the set B. Then if /: X -» Y is a

j -approximate selection for R (in the sense of Michael), then f~\(\,l]) = B, a

non-Borel set. Thus, R admits no Borel ^-approximate selection.

Continuous approximate selections, either in our sense or that of Michael, can be

obtained for certain well-behaved relations with convex vertical sections. A recent

example: if X is paracompact and Y is a normed linear space, then those relations

with domain X that admit for each e > 0 a continuous e-approximate selection in the

sense of Michael are precisely those that are almost lower semicontinuous [4].

Invariably, such approximations are constructed by piecing together continuous

functions defined locally via a partition of unity [5, p. 170] to yield a globally

defined continuous function that is close to the relation. We close by showing that

locally defined Baire class a functions are subject to such an amalgamation,

provided X is metric and y is a second countable topological vector space.

Theorem 2. Let X be a metric space and let Y be a second countable topological

vector space. Let [Ux: A G A} be a locally finite open cover of X and let {P\(-):

X G A} be a partition of unity subordinated to the cover. Suppose for each A G A the

function fx: Ux-> Y is of Baire class a. Then f: X -» Y defined by f(x) =

2\eAP\(x)f\(x) is of Baire class a.

Proof. Fix x in X and let Vx be an open neighborhood of x that meets only

finitely many members of the open cover, say {l/x ,..., UXJ. By Lemma B we need
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only show that f\Vx is of Baire class a. Now for each z in Vx we have f(z) =

2"= i Pa (z)/\(z)- Since the restriction of each function of Baire class a is of Baire

class a on its restricted domain, to show that /1 Vx is of Baire class a it suffices to

show that if hx: X-* Y and h2: X -> y are of Baire class a and p is a real valued

continuous function on X, then both phx and /<, + /i2 are of Baire class a. We prove

the former statement, leaving the latter to the reader. Let {G¡: / G Z+ } and {£/:

; G Z+ } be bases for the topologies on Y and the line, respectively. Consider ¡p:

X ^ YX R defined by <?(x) = (hx(x), p(x)). Since <f\Gi X Uj) = h~x\G,) D

p~\Uj) and the sets of additive class a contain the open sets and are closed under

finite intersections and countable unions, the second countability of Y X R implies

<t>~](G) is of additive class a for each open set G in the product. Since \p: Y X R ^ Y

defined by ^(y, 6) — By is continuous, ph, = \p ° $ is of Baire class a.

It is important to note that Theorem 2 cannot be used to piece together locally

Borel functions to obtain a globally Borel function. Using the well-known example

of Szpilrajn-Marczewski [6] of a non-Borel set in a metric space that is nevertheless

locally Borel, a counterexample can be easily constructed. The details are left to the

reader.
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