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ON FUNCTIONS THAT APPROXIMATE RELATIONS
GERALD BEER

ABSTRACT. Let X be a metric space and let Y be a separable metric space. Suppose R
is a relation in X X Y. The following are equivalent: (a) for each ¢ > 0 there exists f:
X — Y such that the Hausdorff distance from f to R is at most ¢ (b) the domain of
R is a dense subset of X, and for each isolated point x of the domain the vertical
section of R at x is a singleton; (c) for each ¢ > O there exists f: X — Y of Baire class
one such that the Hausdorff distance from f to R is at most e.

Let ( X, dy) and (Y, d,) be metric spaces. By a relation R in X X Y we mean a
nonempty subset of the product. Let us make X X Y a metric space by defining the
distance p between points (x,, y,) and (x,, y,) in the product by

p[(xh ), (xg, )’2)] = max{dy(x,, x3),dy(y1, »)}-

A function f: X — Y will be said [3] to e-approximate R if each point in f has
p-distance at most ¢ from some point in R, and each point of R has p-distance at
most ¢ from some point in f. Alternatively, f can be called [2] an e-approximate
selection for R, although this terminology has been used differently by Michael [7]
and Deutsch and Kenderov [4]. More formally, if f is an e-approximate selection for
R, then f has Hausdorff distance at most ¢ from R. We now pause to describe this
notion.

Let W be a metric space. For each point w in W let S.[w] denote the open ball of
radius & with center w in W. If C C W denote U _.S,[w] by S,[C]. If K is another
set in W and there exists ¢ > 0 for which both S.[C] D K and S,[K] D C, then the
Hausdorff distance 8 between C and K is given by

8[C, K] =inf{e: S[C] D Kand S,[K] D C}.

If no such e exists, we write §[C, K] = co. Further information on this notion of
distance can be found in Aubin [1], Kuratowski [6], or Nadler [9]. Now if § denotes
Hausdorff distance in X X Y as induced by p and R is a nonempty subset of X X Y
and f: X - Y, then the symbol §[ f, R] makes sense, and it is clear that (i) if f
e-approximates R, then 8[ f, R] <e¢; (ii) if 8[ f, R] < ¢ then f §-approximates R for
each § > &.

The main purpose of this note is to characterize for arbitrary X and separable Y
those relations in X X Y that admit for each £ > 0 a Borel e-approximate selection.
We shall in fact show that the existence for each ¢ > 0 of an e-approximate selection
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(Borel measurable or not) for the relation implies the existence for each ¢ > 0 of a
Baire class one e-approximate selection.

DErINITION. Let X and Y be metric spaces. A function f: X — Y is said to be of
Baire class a < Q if for each open subset G of Y the set f ~'(G) is of additive class a
in X.

In particular, f: X — Y is of Baire class one if the inverse image of each open
subset of Y is an F, subset of X. For a thorough discussion of such functions, the
reader should consult Kuratowski [6], where the functions of Baire class «a are called
B-measurable of class a. We need two results from this source, which we state as
lemmas. The first is not deep; the second is a serious theorem of Montgomery [8].

LEMMA A. Let X and Y be metric spaces. Suppose {A;: i € Z™" } is a collection of
sets each of additive class a with union X. Suppose f: X — Y and for each i € Z* the
restriction of f to A, is of Baire class a. Then f is of Baire class a.

LEMMA B. Let X be a metric space and let F C X. Suppose for each x € X there
exists an open neighborhood V. of x such that F N\ V,_is of additive class a. Then F
itself is of additive class a.

Since open sets in a metric space are F, sets, the phrase “F N V,_ is of additive
class a” used in Lemma B is unambigous: subsets of ¥V that are of additive class a
with respect to the relative topology on V, are precisely those that are of additive
class a with respect to the topology on X. In the sequel we shall use the following

notation for the domain and vertical section at x of a relation Rin X X Y:
Dom(R) = {x: forsomey, (x, y) € R}, R(x)= {y:(x,y) €ER}.

THEOREM 1. Let X be a metric space and Y a separable metric space. Suppose R is a
relation in X X Y. The following are equivalent.

(a) For each ¢ > 0 there exists f: X — Y such that 8[ f, R] <.

(b) The domain of R is a dense subset of X, and for each isolated point x of the
domain the section R(x) is a singleton.

(c) For each € > O there exists f: X — Y of Baire class one such that 8[ f, R] <e.

PROOF. (a) — (b). Suppose that Dom(R) # X. Then there exists x € X and ¢ > 0
such that S,[x] N Dom(R) = @. It follows that if f: X — Y is arbitrary, then
f & S.[R), whence 8[f, R] = e. Suppose now that Dom(R) = X, but for some
isolated point x of Dom(R) the section R(x) contains two distinct points y, and y,
of Y. Since x must be an isolated point of X, there exists € > 0 such that both
dy(y), y2) > ¢ and S[x] = {x}. Hence if f: X — Y satisfies 8[ f, R] < &/2 we must
simultaneously have d,( f(x), y,) <¢&/2 and d( f(x), »,) < ¢/2, an impossibility.

(b) - (¢). If X has no limit points, then Dom(R) = X and each vertical section of
R is a singleton. Thus, R is a continuous function, and there is nothing to prove.
Otherwise, let # = ¢/2 and let L denote the set of limit points of X. Consider the
family € of subsets S of L with the following property: for each {x, z} C S,
dy(x, z) = 0. If Q is partially ordered by inclusion, then by Zorn’s lemma £ has a
maximal member, say, {x,: i € I}, and it easily follows that L C U,_,Sy[x,]. Let
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C = {y,: n €Z"} be a countable dense subset of Y, and for each i € I choose
Vuiy € C whose distance from U {R(x): x € Sy[x,] " Dom(R)} is less than 6.
Since W= U, _,Sy[x,] as a subspace of X is paracompact and regular, there is an
open refinement {Vy: A € A} of the cover {Sy[x,]: i € I} of W such that {V,:
A€ A} is a locally finite (closed) refinement of {Sy[x,]: i€ [}. Let E=
U, ;5,3[x;]- We first define a Baire class one function on this open subspace of X.
Let i € I be arbitrary. Since x; is a limit point of X, there is a sequence {x,,} of
distinct points in Sy ;[x;] convergent to x,. We define h;: Sy 5[x;] — Y as follows:
let &, map {x,;: n € Z* } onto a dense subset of U {R(x): x € Sy[x;] N Dom(R)},
and let h; assign to each remaining point of Sy 5[ x;] the point y, ;). Functions with
countable domains are automatically of Baire class one; so h;| {x,;: n € Z" } and
h,|Sg,3[x,] — {x,: n € Z"} are both of Baire class one. Since the set {x,;:
n € Z"} and its complement in S, ;[ x,] are both F, sets, Lemma A implies that A,
itself is of Baire class one. Now set & = U, _ ;. By the construction of {x;: i € I},
it is clear that h is a well-defined function from E to Y. Since the inverse image of
each open set under 4 is locally an F, set, Lemma B ensures that 4 is of Baire class
one.

We next define a Baire class one function on W -~ E. For each A € A choose
i(A\) € I such that I7>\ C Sylx;n))- For each x € W — E let g(x) = y,, Where
n(i(A)) is the smallest integer such that x € V,. We claim that for each m € Z* the
set g7' ({1, ¥a,---.¥m}) is a relatively closed subset of W — E. To see this let {w,)
be a sequence in g~'({,, ¥5,---,),}) convergent to some point w of W — E. Since
{(Vyx: X € A} is locally finite there exist indices {A,, Ay...,A,} C A and an integer
K such that for each k > K, {A: A € A and w, € V,} C (A}, A,,...,A,}. Now for
each k > K there exists A(k) € {A, A,,...,A,} such that w, € ¥, and n(i(A(k)))
<m. Since {A, A,,...,A,} is finite, there exists A € {A, A,,...,A,} for which
w € V, and n(i(A)) < m. This establishes the claim. Since the intersection of a
closed set with an open set is an F, set, for each m = 2,

g () = (i vm}) — 87 {pise oo I })

is a relatively F, subset of W — E. Hence for each open set G of Y the set
g (G) =g (C N G) is a relatively F, subset of W — E, and it follows that g:
W — E - Y is of Baire class one.

On X — W the relation R reduces to a continuous function. Since the sets E,

W — E, and X — W are each F, subsets of X, by Lemma A the function f/: X - Y
defined by

h(x) ifx€E,
f(x)=1g(x) ifxewW-—-E,
R(x) ifxeXxX—w

is of Baire class one. It remains to show that 8[ f, R] < e = 26. We first show that
each point in f is within ¢ of some point in R. If x € X — W then (x, f(x)) € R. If
x € W — E then there exists i € I such that x € S[x,] and f(x) = y,,,. However,
by the definition of y,;, there exists a point x* in Sy[x,] and a point y € R(x}) for
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which dy(y, y,;)) <80. It follows that p[(x, f(x)),(x}, y)] < max{26, 0} = e. Fi-
nally, if x € E then there exists i € I such that d y(x, x,) < 8/3; moreover, f(x) is
either y, ;) or a point in U {R(z): z € Sy[x;] N Dom(R)}. In either case (x, f(x))
has p-distance less than & from some point (x*, y), where x} € S;[x;,]and y € R(x}).
We now must show that each point of R is within ¢ of some point of f. If
x € X — W then R(x) is a singleton and R(x) = f(x). Next let x € W N Dom(R)
and choose y € R(x). There exists i € I such that x € Sy[x,]. Recall, however, that
{(f(x,;)): n€Z"} is dense in U {R(z): z € Sy[x;] N Dom(R)}, so there exists
n € Z* for which d( f(x,,), y) < e. Again, it is clear that p[(x, ), (x,,, flx, N <
¢, and this portion of the proof is complete.

(c) — (a). Obvious.

Theorem 1 fails without the separability assumption on Y.

ExaMPLE 1. Let X be the rationals, viewed as a subspace of the line with the usual
topology, and let Y be an uncountable set with the discrete metric. Let R = X X Y.
Now each f: X — Y has a countable range, and it follows from the definition of the
metricpon X X Y that§[f, R] = 1.

Following Michael we could call f: X - Y an e-approximate selection for a
relation R with domain X if, for each x in X, f(x) € S,[R(x)]. The existence of Baire
class one approximate selections in this context would seem to rest on some
continuity requirement on the map x — R(x). For example, the property of almost
lower semicontinuity, due to Deutsch and Kenderov [4], is sufficient [2]: for each x in
X there exists a neighborhood V, of x such that M {S[R(w)]: w € V,} is nonempty.

EXAMPLE 2. Let X = Y = [0, 1] and let B be a non-Borel set in the interval. Let
R C X X Y be the characteristic function of the set B. Then if f: X > Y is a
3-approximate selection for R (in the sense of Michael), then f~'((3,1]) = B, a
non-Borel set. Thus, R admits no Borel §-approximate selection.

Continuous approximate selections, either in our sense or that of Michael, can be
obtained for certain well-behaved relations with convex vertical sections. A recent
example: if X is paracompact and Y is a normed linear space, then those relations
with domain X that admit for each ¢ > 0 a continuous e-approximate selection in the
sense of Michael are precisely those that are almost lower semicontinuous [4].
Invariably, such approximations are constructed by piecing together continuous
functions defined locally via a partition of unity [5, p. 170] to yield a globally
defined continuous function that is close to the relation. We close by showing that
locally defined Baire class a functions are subject to such an amalgamation,
provided X is metric and Y is a second countable topological vector space.

THEOREM 2. Let X be a metric space and let Y be a second countable topological
vector space. Let {Uy: A € A} be a locally finite open cover of X and let {p,(-):
A € A} be a partition of unity subordinated to the cover. Suppose for each A € A the
function f,: U, - Y is of Baire class a. Then f: X — Y defined by f(x)=
Zaea PA(X)(x) is of Baire class a.

PrOOF. Fix x in X and let V, be an open neighborhood of x that meets only
finitely many members of the open cover, say {U,,...,U, }. By Lemma B we need
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only show that f| V, is of Baire class a. Now for each z in V, we have f(z) =
2'_,pa(2)fy(2)- Since the restriction of each function of Baire class « is of Baire
class a on its restricted domain, to show that f| V, is of Baire class «a it suffices to
show that if #: X - Y and h,: X — Y are of Baire class a and p is a real valued
continuous function on X, then both ph, and 4, + h, are of Baire class a. We prove
the former statement, leaving the latter to the reader. Let {G;: i € Z*} and {U:
i € Z*} be bases for the topologies on Y and the line, respectively. Consider ¢:
X =YX R defined by ¢(x) = (h(x), p(x)). Since ¢7'(G, X U) = h;'(G,) N
p"(Uj) and the sets of additive class a contain the open sets and are closed under
finite intersections and countable unions, the second countability of ¥ X R implies
¢ !(G) is of additive class « for each open set G in the product. Since y: Y X R —» Y
defined by Y( y, §) = 0y is continuous, ph, = ¢ o ¢ is of Baire class a.

It is important to note that Theorem 2 cannot be used to piece together locally
Borel functions to obtain a globally Borel function. Using the well-known example
of Szpilrajn-Marczewski [6] of a non-Borel set in a metric space that is nevertheless
locally Borel, a counterexample can be easily constructed. The details are left to the
reader.
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