ON FUNCTIONS THAT APPROXIMATE RELATIONS

GERALD BEER

ABSTRACT. Let X be a metric space and let Y be a separable metric space. Suppose R is a relation in $X \times Y$. The following are equivalent: (a) for each $\epsilon > 0$ there exists $f: X \to Y$ such that the Hausdorff distance from f to R is at most ϵ ; (b) the domain of R is a dense subset of X, and for each isolated point x of the domain the vertical section of R at x is a singleton; (c) for each $\epsilon > 0$ there exists $f: X \to Y$ of Baire class one such that the Hausdorff distance from f to R is at most ϵ .

Let $\langle X, d_X \rangle$ and $\langle Y, d_Y \rangle$ be metric spaces. By a relation R in $X \times Y$ we mean a nonempty subset of the product. Let us make $X \times Y$ a metric space by defining the distance ρ between points (x_1, y_1) and (x_2, y_2) in the product by

$$\rho[(x_1, y_1), (x_2, y_2)] = \max\{d_X(x_1, x_2), d_Y(y_1, y_2)\}.$$

A function $f: X \to Y$ will be said [3] to ε -approximate R if each point in f has ρ -distance at most ε from some point in R, and each point of R has ρ -distance at most ε from some point in f. Alternatively, f can be called [2] an ε -approximate selection for R, although this terminology has been used differently by Michael [7] and Deutsch and Kenderov [4]. More formally, if f is an ε -approximate selection for R, then f has Hausdorff distance at most ε from R. We now pause to describe this notion.

Let W be a metric space. For each point w in W let $S_{\epsilon}[w]$ denote the open ball of radius ϵ with center w in W. If $C \subset W$ denote $\bigcup_{w \in C} S_{\epsilon}[w]$ by $S_{\epsilon}[C]$. If K is another set in W and there exists $\epsilon > 0$ for which both $S_{\epsilon}[C] \supset K$ and $S_{\epsilon}[K] \supset C$, then the Hausdorff distance δ between C and K is given by

$$\delta[C, K] = \inf\{\varepsilon : S_{\varepsilon}[C] \supset K \text{ and } S_{\varepsilon}[K] \supset C\}.$$

If no such ε exists, we write $\delta[C, K] = \infty$. Further information on this notion of distance can be found in Aubin [1], Kuratowski [6], or Nadler [9]. Now if δ denotes Hausdorff distance in $X \times Y$ as induced by ρ and R is a nonempty subset of $X \times Y$ and $f: X \to Y$, then the symbol $\delta[f, R]$ makes sense, and it is clear that (i) if f ε -approximates R, then $\delta[f, R] \le \varepsilon$; (ii) if $\delta[f, R] \le \varepsilon$ then $f \theta$ -approximates R for each $\theta > \varepsilon$.

The main purpose of this note is to characterize for arbitrary X and separable Y those relations in $X \times Y$ that admit for each $\varepsilon > 0$ a Borel ε -approximate selection. We shall in fact show that the existence for each $\varepsilon > 0$ of an ε -approximate selection

Received by the editors August 18, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 41A65, 54C65, 54B20; Secondary 54C50.

Key words and phrases. Approximate selection, Hausdorff metric, functions of Baire class one.

(Borel measurable or not) for the relation implies the existence for each $\varepsilon > 0$ of a Baire class one ε -approximate selection.

DEFINITION. Let X and Y be metric spaces. A function $f: X \to Y$ is said to be of Baire class $\alpha < \Omega$ if for each open subset G of Y the set $f^{-1}(G)$ is of additive class α in X.

In particular, $f: X \to Y$ is of Baire class one if the inverse image of each open subset of Y is an F_{σ} subset of X. For a thorough discussion of such functions, the reader should consult Kuratowski [6], where the functions of Baire class α are called *B-measurable of class* α . We need two results from this source, which we state as lemmas. The first is not deep; the second is a serious theorem of Montgomery [8].

LEMMA A. Let X and Y be metric spaces. Suppose $\{A_i: i \in Z^+\}$ is a collection of sets each of additive class α with union X. Suppose $f: X \to Y$ and for each $i \in Z^+$ the restriction of f to A_i is of Baire class α . Then f is of Baire class α .

LEMMA B. Let X be a metric space and let $F \subset X$. Suppose for each $x \in X$ there exists an open neighborhood V_x of x such that $F \cap V_x$ is of additive class α . Then F itself is of additive class α .

Since open sets in a metric space are F_{σ} sets, the phrase " $F \cap V_x$ is of additive class α " used in Lemma B is unambigous: subsets of V_x that are of additive class α with respect to the relative topology on V_x are precisely those that are of additive class α with respect to the topology on X. In the sequel we shall use the following notation for the *domain* and *vertical section* at X of a relation $X \times Y$:

$$Dom(R) = \{x: \text{ for some } y, (x, y) \in R\}, \quad R(x) = \{y: (x, y) \in R\}.$$

THEOREM 1. Let X be a metric space and Y a separable metric space. Suppose R is a relation in $X \times Y$. The following are equivalent.

- (a) For each $\varepsilon > 0$ there exists $f: X \to Y$ such that $\delta[f, R] \le \varepsilon$.
- (b) The domain of R is a dense subset of X, and for each isolated point x of the domain the section R(x) is a singleton.
 - (c) For each $\varepsilon > 0$ there exists $f: X \to Y$ of Baire class one such that $\delta[f, R] \leq \varepsilon$.

PROOF. (a) \to (b). Suppose that $\overline{\mathrm{Dom}(R)} \neq X$. Then there exists $x \in X$ and $\varepsilon > 0$ such that $S_{\varepsilon}[x] \cap \mathrm{Dom}(R) = \emptyset$. It follows that if $\underline{f} \colon X \to Y$ is arbitrary, then $f \not\subset S_{\varepsilon}[R]$, whence $\delta[f, R] \ge \varepsilon$. Suppose now that $\overline{\mathrm{Dom}(R)} = X$, but for some isolated point x of $\mathrm{Dom}(R)$ the section R(x) contains two distinct points y_1 and y_2 of Y. Since x must be an isolated point of X, there exists $\varepsilon > 0$ such that both $d_Y(y_1, y_2) > \varepsilon$ and $S_{\varepsilon}[x] = \{x\}$. Hence if $f \colon X \to Y$ satisfies $\delta[f, R] < \varepsilon/2$ we must simultaneously have $d_Y(f(x), y_1) < \varepsilon/2$ and $d_Y(f(x), y_2) < \varepsilon/2$, an impossibility.

(b) \rightarrow (c). If X has no limit points, then Dom(R) = X and each vertical section of R is a singleton. Thus, R is a continuous function, and there is nothing to prove. Otherwise, let $\theta = \varepsilon/2$ and let L denote the set of limit points of X. Consider the family Ω of subsets S of L with the following property: for each $\{x, z\} \subset S$, $d_X(x, z) \ge \theta$. If Ω is partially ordered by inclusion, then by Zorn's lemma Ω has a maximal member, say, $\{x_i: i \in I\}$, and it easily follows that $L \subset \bigcup_{i \in I} S_{\theta}[x_i]$. Let

 $C = \{y_n : n \in \mathbb{Z}^+\}$ be a countable dense subset of Y, and for each $i \in I$ choose $y_{n(i)} \in C$ whose distance from $\bigcup \{R(x): x \in S_{\theta}[x_i] \cap \text{Dom}(R)\}$ is less than θ . Since $W = \bigcup_{i \in I} S_{\theta}[x_i]$ as a subspace of X is paracompact and regular, there is an open refinement $\{V_{\lambda}: \lambda \in \Lambda\}$ of the cover $\{S_{\theta}[x_i]: i \in I\}$ of W such that $\{\overline{V}_{\lambda}: \lambda \in \Lambda\}$ $\lambda \in \Lambda$ is a locally finite (closed) refinement of $\{S_{\theta}[x_i]: i \in I\}$. Let E = $\bigcup_{i \in I} S_{\theta/3}[x_i]$. We first define a Baire class one function on this open subspace of X. Let $i \in I$ be arbitrary. Since x_i is a limit point of X, there is a sequence $\{x_{ni}\}$ of distinct points in $S_{\theta/3}[x_i]$ convergent to x_i . We define h_i : $S_{\theta/3}[x_i] \to Y$ as follows: let h_i map $\{x_{ni}: n \in Z^+\}$ onto a dense subset of $\bigcup \{R(x): x \in S_{\theta}[x_i] \cap \text{Dom}(R)\}$, and let h_i assign to each remaining point of $S_{\theta/3}[x_i]$ the point $y_{n(i)}$. Functions with countable domains are automatically of Baire class one; so $h_i \mid \{x_{ni}: n \in Z^+\}$ and $h_i | S_{\theta/3}[x_i] - \{x_{ni}: n \in Z^+\}$ are both of Baire class one. Since the set $\{x_{ni}: x_{ni}: x_{ni}:$ $n \in \mathbb{Z}^+$ and its complement in $S_{\theta/3}[x_i]$ are both F_{σ} sets, Lemma A implies that h_i itself is of Baire class one. Now set $h = \bigcup_{i \in I} h_i$. By the construction of $\{x_i : i \in I\}$, it is clear that h is a well-defined function from E to Y. Since the inverse image of each open set under h is locally an F_{σ} set, Lemma B ensures that h is of Baire class one.

We next define a Baire class one function on W-E. For each $\lambda\in\Lambda$ choose $i(\lambda)\in I$ such that $\overline{V}_\lambda\subset S_\theta[x_{i(\lambda)}]$. For each $x\in W-E$ let $g(x)=y_{n(i(\lambda))}$ where $n(i(\lambda))$ is the smallest integer such that $x\in\overline{V}_\lambda$. We claim that for each $m\in Z^+$ the set $g^{-1}(\{y_1,y_2,\ldots,y_m\})$ is a relatively closed subset of W-E. To see this let $\{w_k\}$ be a sequence in $g^{-1}(\{y_1,y_2,\ldots,y_m\})$ convergent to some point w of W-E. Since $\{\overline{V}_\lambda\colon\lambda\in\Lambda\}$ is locally finite there exist indices $\{\lambda_1,\lambda_2,\ldots,\lambda_p\}\subset\Lambda$ and an integer K such that for each k>K, $\{\lambda\colon\lambda\in\Lambda$ and $w_k\in\overline{V}_\lambda\}\subset\{\lambda_1,\lambda_2,\ldots,\lambda_p\}$. Now for each k>K there exists $\lambda(k)\in\{\lambda_1,\lambda_2,\ldots,\lambda_p\}$ such that $w_k\in\overline{V}_{\lambda(k)}$ and $n(i(\lambda(k)))$ $\leq m$. Since $\{\lambda_1,\lambda_2,\ldots,\lambda_p\}$ is finite, there exists $\lambda\in\{\lambda_1,\lambda_2,\ldots,\lambda_p\}$ for which $w\in\overline{V}_\lambda$ and $n(i(\lambda))\leq m$. This establishes the claim. Since the intersection of a closed set with an open set is an F_a set, for each $m\geq 2$,

$$g^{-1}(\{y_m\}) = g^{-1}(\{y_1, \dots, y_m\}) - g^{-1}(\{y_1, \dots, y_{m-1}\})$$

is a relatively F_{σ} subset of W-E. Hence for each open set G of Y the set $g^{-1}(G)=g^{-1}(C\cap G)$ is a relatively F_{σ} subset of W-E, and it follows that g: $W-E\to Y$ is of Baire class one.

On X-W the relation R reduces to a continuous function. Since the sets E, W-E, and X-W are each F_{σ} subsets of X, by Lemma A the function $f: X \to Y$ defined by

$$f(x) = \begin{cases} h(x) & \text{if } x \in E, \\ g(x) & \text{if } x \in W - E, \\ R(x) & \text{if } x \in X - W \end{cases}$$

is of Baire class one. It remains to show that $\delta[f, R] \le \varepsilon = 2\theta$. We first show that each point in f is within ε of some point in R. If $x \in X - W$ then $(x, f(x)) \in R$. If $x \in W - E$ then there exists $i \in I$ such that $x \in S_{\theta}[x_i]$ and $f(x) = y_{n(i)}$. However, by the definition of $y_{n(i)}$ there exists a point x_i^* in $S_{\theta}[x_i]$ and a point $y \in R(x_i^*)$ for

646 GERALD BEER

which $d_Y(y, y_{n(i)}) < \theta$. It follows that $\rho[(x, f(x)), (x_i^*, y)] < \max\{2\theta, \theta\} = \varepsilon$. Finally, if $x \in E$ then there exists $i \in I$ such that $d_X(x, x_i) < \theta/3$; moreover, f(x) is either $y_{n(i)}$ or a point in $\bigcup \{R(z): z \in S_{\theta}[x_i] \cap \text{Dom}(R)\}$. In either case (x, f(x)) has ρ -distance less than ε from some point (x_i^*, y) , where $x_i^* \in S_{\theta}[x_i]$ and $y \in R(x_i^*)$. We now must show that each point of R is within ε of some point of f. If $x \in X - W$ then R(x) is a singleton and R(x) = f(x). Next let $x \in W \cap \text{Dom}(R)$ and choose $y \in R(x)$. There exists $i \in I$ such that $x \in S_{\theta}[x_i]$. Recall, however, that $\{f(x_{ni}): n \in Z^+\}$ is dense in $\bigcup \{R(z): z \in S_{\theta}[x_i] \cap \text{Dom}(R)\}$, so there exists $n \in Z^+$ for which $d_Y(f(x_{ni}), y) < \varepsilon$. Again, it is clear that $\rho[(x, y), (x_{ni}, f(x_{ni}))] < \varepsilon$, and this portion of the proof is complete.

(c) \rightarrow (a). Obvious.

Theorem 1 fails without the separability assumption on Y.

EXAMPLE 1. Let X be the rationals, viewed as a subspace of the line with the usual topology, and let Y be an uncountable set with the discrete metric. Let $R = X \times Y$. Now each $f: X \to Y$ has a countable range, and it follows from the definition of the metric ρ on $X \times Y$ that $\delta[f, R] = 1$.

Following Michael we could call $f: X \to Y$ an ε -approximate selection for a relation R with domain X if, for each x in X, $f(x) \in S_{\varepsilon}[R(x)]$. The existence of Baire class one approximate selections in this context would seem to rest on some continuity requirement on the map $x \to R(x)$. For example, the property of almost lower semicontinuity, due to Deutsch and Kenderov [4], is sufficient [2]: for each x in X there exists a neighborhood V_x of x such that $\bigcap \{S_{\varepsilon}[R(w)]: w \in V_x\}$ is nonempty.

EXAMPLE 2. Let X = Y = [0, 1] and let B be a non-Borel set in the interval. Let $R \subset X \times Y$ be the characteristic function of the set B. Then if $f: X \to Y$ is a $\frac{1}{3}$ -approximate selection for R (in the sense of Michael), then $f^{-1}((\frac{1}{2}, 1]) = B$, a non-Borel set. Thus, R admits no Borel $\frac{1}{3}$ -approximate selection.

Continuous approximate selections, either in our sense or that of Michael, can be obtained for certain well-behaved relations with convex vertical sections. A recent example: if X is paracompact and Y is a normed linear space, then those relations with domain X that admit for each $\varepsilon > 0$ a continuous ε -approximate selection in the sense of Michael are precisely those that are almost lower semicontinuous [4]. Invariably, such approximations are constructed by piecing together continuous functions defined locally via a partition of unity [5, p. 170] to yield a globally defined continuous function that is close to the relation. We close by showing that locally defined Baire class α functions are subject to such an amalgamation, provided X is metric and Y is a second countable topological vector space.

THEOREM 2. Let X be a metric space and let Y be a second countable topological vector space. Let $\{U_{\lambda} \colon \lambda \in \Lambda\}$ be a locally finite open cover of X and let $\{p_{\lambda}(\cdot) \colon \lambda \in \Lambda\}$ be a partition of unity subordinated to the cover. Suppose for each $\lambda \in \Lambda$ the function $f_{\lambda} \colon U_{\lambda} \to Y$ is of Baire class α . Then $f \colon X \to Y$ defined by $f(x) = \sum_{\lambda \in \Lambda} p_{\lambda}(x) f_{\lambda}(x)$ is of Baire class α .

PROOF. Fix x in X and let V_x be an open neighborhood of x that meets only finitely many members of the open cover, say $\{U_{\lambda_1}, \ldots, U_{\lambda_n}\}$. By Lemma B we need

only show that $f | V_x$ is of Baire class α . Now for each z in V_x we have $f(z) = \sum_{i=1}^n p_{\lambda_i}(z) f_{\lambda_i}(z)$. Since the restriction of each function of Baire class α is of Baire class α on its restricted domain, to show that $f | V_x$ is of Baire class α it suffices to show that if $h_1: X \to Y$ and $h_2: X \to Y$ are of Baire class α and p is a real valued continuous function on X, then both ph_1 and $h_1 + h_2$ are of Baire class α . We prove the former statement, leaving the latter to the reader. Let $\{G_i: i \in Z^+\}$ and $\{U_i: i \in Z^+\}$ be bases for the topologies on Y and the line, respectively. Consider ϕ : $X \to Y \times R$ defined by $\phi(x) = (h_1(x), p(x))$. Since $\phi^{-1}(G_i \times U_j) = h_1^{-1}(G_i) \cap p^{-1}(U_j)$ and the sets of additive class α contain the open sets and are closed under finite intersections and countable unions, the second countability of $Y \times R$ implies $\phi^{-1}(G)$ is of additive class α for each open set G in the product. Since ψ : $Y \times R \to Y$ defined by $\psi(y, \theta) = \theta y$ is continuous, $ph_1 = \psi \circ \phi$ is of Baire class α .

It is important to note that Theorem 2 cannot be used to piece together locally Borel functions to obtain a globally Borel function. Using the well-known example of Szpilrajn-Marczewski [6] of a non-Borel set in a metric space that is nevertheless locally Borel, a counterexample can be easily constructed. The details are left to the reader.

REFERENCES

- 1. J. P. Aubin, Applied abstract analysis, Wiley, New York, 1977.
- 2. G. Beer, On a theorem of Deutsch and Kenderov (submitted).
- 3. A. Cellina, A further result on the approximation of set valued mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 48 (1970), 412-416.
- 4. F. Deutsch and P. Kenderov, Continuous selections and approximate selections for set-valued mappings and applications to metric projections, SIAM J. Math. Anal. 14 (1983), 185-194.
 - 5. J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966.
 - 6. K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966.
 - 7. E. Michael, Selected selection theorems, Amer. Math. Monthly 63 (1956), 233-237.
 - 8. D. Montgomery, Nonseparable metric spaces, Fund. Math. 25 (1935), 527-533.
 - 9. S. Nadler, Hyperspaces of sets, Dekker, New York, 1978.

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY, LOS ANGELES, LOS ANGELES, CALIFORNIA 90032