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DISCRETE SETS OF SINGULAR CARDINALITY

WILLIAM G. FLEISSNER

Abstract. Let « be a singular cardinal. In Fleissner's thesis, he showed that in

normal spaces X, certain discrete sets Y of cardinality a (called here sparse) which

are < ic-separated are, in fact, separated. In Watson's thesis, he proves the same for

countably paracompact spaces X. Here we improve these results by making no

assumption on the space X. As a corollary, we get that assuming V = L, S,-para-

lindelöf 7", spaces of character « co, are collectionwise Hausdorff.

In his thesis, Fleissner proved

Theorem [F]. Assuming V = L, normal, T2, spaces of character *£ c are collection-

wise Hausdorff.

The proof is by induction on k, the induction hypothesis being that discrete sets of

cardinality k can be separated. For k regular, the proof uses a <3>-like principle. For «

singular, the induction hypothesis GCH and normality are used to show that a

discrete set of cardinality k is sparse (defined below). The singular k case is finished

by proving that in normal spaces A', discrete, sparse, < «-separated sets are sep-

arated. (Let us call this the last lemma.) In his thesis [W], Watson proved the

analogous results with normality replaced with countable paracompactness. Here we

prove the last lemma without assuming that X is either normal or countably

paracompact.

A subset Fofa space ( X, 5" ) is called discrete if every x E X has a neighborhood

containing at most one point of Y. A neighborhood assignment for Y is a function U:

Y -» 5 such that for all y E Y, y E U(y). Y is separated if there is a disjoint

neighborhood assignment for Y. Y is < K-separated if every subset of Y of cardinal-

ity < k is separated.

Let us fix a singular cardinal k and a closed, cofinal in k, set of cardinals, {kb:

ß < cf(«)}, enumerated in increasing order, such that k0 = 0 and k, s* cf k, k, > «,.

Throughout this paper, Y will be a discrete subset of a space X with | Y \ = k. We say

that t? = (Aß)ß<K is a nice chain if U & — Y; for all ß < k, | Aß | = Kß; if a < ß, then

Aa C Aß; and for limit ordinals X, U {Aß: ß < X) = Ax.

Given a nice chain £, a neighborhood assignment U, and a ß < cf k, we define

S(&,U,ß)= U {U(y):yEAß} n{Y-Aß).
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We will say that U is thin w.r.t. d if, for all ß < cf «, | S(6B, U, ß) |«£ k^. We will say

that Y is sparse if for every nice chain & there is a neighborhood assignment U which

is thin w.r.t. 6B.

The notion "sparse" is rather technical, but it is an important intermediate

concept, as illustrated by the following two lemmata.

Lemma 1. Assume GCH. Let Y be a discrete subset with singular cardinality k of a

space X with the character of X less than k. If X is (a) normal, or (b) countably

paracompact, or (c) N x-paralindelóf", then Y is sparse.

Lemma 2. If Y is sparse and < K-separated, then Y is separated.

Proof of Lemma 1. (A sketch—for details see [F and W].) Let & be an arbitrary

nice chain.

Suppose X is normal. For each ß < cf k, enumerate the functions u from Aß to S\

where u(y) is in a fixed small neighborhood base of y, as {w|: 8 < Kß }. (This is the

only use of GCH and the character of X being less than k). Inductively define two

disjoint closed subsets 77 and K of Y. At stage (ß,8), if possible, ruin every

extension of Uß from defining disjoint open sets separating 77 and K. Having defined

77 and K, use normality to separate them and define a neighborhood assignment U.

For each ß, why was not U\Aß ruined? It must have happened that | S(&, U, ß) |<

Kß. That is, U is thin w.r.t. &.

Similarly for X countably paracompact, we must enumerate pairs (u, j) where u:

Aß -» *5 and j: Aß -> w, and we must define a partition {7£: /' < <o} of Y. For X

S|-paralindelöf,y: Aß -* co,, and the partition of y is (7£: i < w,}.    D

We need some preparation for Lemma 2. Given a nice chain 6?, we define b:

Y -> cf k by b(y) — min{/3 < k: y E Aß+X). If 6£has a prime or subscript, then the b

defined from 1$ has the same.

Lemma 3. If Y is sparse, let & be a nice chain and U a neighborhood assignment

w.r.t. &. Abbreviate S(&, U, ß) by Sß. There is a nice chain &■' and a neighborhood

assignment U' satisfying:

(i) for all ß < cf k, A'ß D Aß U Sß;

(ii) if y G Sß, then b'( y) = b( y);

(iii)ifyESß,thenb'(y)<b(y);

(iv)for ally, z, if b(z) < b'(y), then U(z) n U'(y) = 0.

Proof. We would like to simply set A'ß = Aß U Sß, but then A'x = U [A'ß: ß < X)

might fail. So for limit ordinals y less than cf k, let (7¿Y)Jg<Y be a nice chain for Sy.

Precisely, U {Tßy: ß < y} = Sy; if ß < y, then \Tßy\<Kß; if a < ß < y, then TJ C

£/; and for limit ordinals A, U {£/: ß < X} = £xy. Set

A'ß = Aß U Sp U (U {£/: y < cf k, y a limit}).

(Here is where the fact that k is singular is used. A'ß is the union of cf k < Kß many

sets of cardinality no greater than Kß.)
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Let y G F be arbitrary. Let ß be least such that >; G Sß (if any exist). Then j' G A'ß',

hence b'(y) < ß. We have shown that for all y, y & Sh,(y). That is, y

GU {U(z): b(z) < b'(y)}. Hence a neighborhood assignment U' satisfying (iv)

can be defined.    D

Proof of Lemma 2. We define nice chains 6?, and neighborhood assignments U¡,

U¡ by induction on i < w. Let 6?0 be arbitrary. If &, has been defined, by sparseness,

choose U, thin w.r.t. to #,.. Apply Lemma 3 to cf,, U, to get &'¡ and U[. Set 6B, + 1 = &¡.

By < «-separated, define a neighborhood assignment U" so that for each ß < cf k,

[U,(y): b,(y) = ß or bi+x(y) = ß) is disjoint.

For each j' G Y and ; < to, bi+ x(y) < ¿>,-(y); hence there is «( y) < w so that for all

/ > «(>>)> />,( jO = b„,y)(y). We define a neighborhood assignment W: Y -» S"by

if(j) =    n    (tf,(jO n t//(j) n c/"(j)).
/<n(.v)+l

We claim that {W(y): y E Y) is disjoint. Let y, z be distinct elements of Y. Let

k = min{«(y), n(z)}. If ¿>A.(y) = bk(z), then £;'(>>) n Uk(z) = 0. Without loss of

generality, assume that bk(y) < bk(z). If bk(y) < b'k(z) = bk+x(z), then Uk(y) D

i/'(z) = 0. Hence bk + x(z) < 6,(z), and fe = «(j). If 6A+1(z) = bk(y), then i/;'(>')

n Uk(z)= 0. So the only possibility left is bk+x(z) < bk(y). Since k = n(y),

bk + x(z) < bk+2(y) = bk(y), hence Uk+X(y) n £, + 1(z) = 0. Hence W(y) n w/(z)
= 0.    D

We say that a space is S,-paralindelöf if every open cover of cardinality co, has a

locally countable refinement.

Corollary. Assume V = L. Discrete subsets of regular N x-paralindelöf spaces of

character < co2 ca« èe separated.

Proof. By induction on k, we prove that discrete sets of cardinality k can be

separated. For k = w,, we note that discrete sets in regular paralindelöf spaces can

be separated by an open cover with the same cardinality as the discrete set. For

other regular k, Watson's proof [W] generalizes in a straightforward manner. For

singular k, first use Lemma 1 and then Lemma 2.
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