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MINIMAL SURFACES WITH CONSTANT CURVATURE

IN 4-DIMENSIONAL SPACE FORMS

Dedicated to Professor S. Sasaki on his 10 th birthday

KATSUEI KENMOTSU1

Abstract. We classify minimal surfaces with constant Gaussian curvature in a

4-dimensional space form without any global assumption. As a corollary of the main

theorem, we show there is no isometric minimal immersion of a surface with

constant negative Gaussian curvature into the unit 4-sphere even locally. This gives a

partial answer to a problem proposed by S. T. Yau.

1. Introduction. Let Mm(c) be a connected Riemannian m-manifold of constant

sectional curvature c. In this paper we classify isometric minimal immersions of

M2(K) into M4(c) without any global assumption and give some partial results for

a classification of minimal immersions of M2(K) into M5(c).

Let S"(l) be the unit sphere in the (n + 1 )-dimensional Euclidean space R"+x.

The Clifford surface in .S3(l) and the Veronese surface in S4(l) are the best known

examples of minimal surfaces in space forms of positive curvature.

By a rigidity theorem of Calabi and DoCarmo and Wallach, Chern and Barbosa

[2,5,4,1], and a localization theorem of Wallach [10], a minimal surface with

constant positive curvature in S4(l) is locally the totally geodesic S2(l) or the

Veronese surface. The main theorem of this paper is

Theorem 1. Let x: M2(K) -» M4(c) be an isometric minimal immersion of M2(K)

into MA(c). If K = c, then x is totally geodesic. Otherwise, either

(a) K = 0, c > 0 and x is a locally Clifford surface in a 3-dimensional totally

geodesic submanifold M3(c) of M4(c), or

(b) K = c/3, c > 0 and x is a locally Veronese surface in M4(c).

As a corollary of the theorem, we show there is no isometric minimal immersion of

the hyperbolic 2-plane, H2[-l], into S4(l) even locally. This gives a partial answer to

problem 101 proposed by S. T. Yau [12, p. 692].

We cannot apply the method used to prove Theorem 1 to higher codimensional

cases directly.  However, in §4 we prove a nonexistence theorem for minimal

Received by the editors January 7, 1983.

1980 Mathematics Subject Classification. Primary 53C42; Secondary 53A10.

Key words ana phrases. Minimal surfaces with constant curvature, minimal immersions of the hyper-

bolic 2-plane, higher fundamental tensors.

1 Partly supported by the Grant-in-Aid for Scientific Research, The Ministry of Education, Science and

Culture, Japan (1981), No. 56540004.

©1983 American Mathematical Society

0002-9939/83/0000-1446/S02.50

133



134 KATSUEI KENMOTSU

immersions of H2[-l] into S5(l) under an additional condition on the 2nd funda-

mental form. Thus we still do not know whether H2[-l] can be minimally immersed

insomeSN(l)(N>5).

It is a pleasure to thank Professor Takashi Ogata, who carefully read the first draft

of this work and found some mistakes in it, and also Professors Manfredo P.

DoCarmo and Tilla Milnor for helpful criticisms on this work.

2. Preliminaries. Let x: M2(K) -» M5(c) be an isometric minimal immersion of

M2(K) into M$(c). Let ex,e2, e-i,e4,e5 be local fields of orthonormal frames in

M5(c) such that, restricted to M2(K), ex and e2 are tangent to M2(K). Let w¡,

1 *s i, j < 2, and wa, 3 < «, ß,... < 5, be the fields of dual frames of eA, 1 <

A, B,...<5. The structure equations of M$(c) are given by dwA = 2 wB A wß/4,

wAB + wBA = 0, and dwAB = 1wAC A wCB — cwA A wB. The summation is taken for

repeated indices. Restricting these frames to M2(K), we have dwl2 = -Kwx A w2

and wa = 0, 3 < a < 5. Exterior differentiation of wa gives h>,„ = 2A„i;M>i and

haij = haJi, where the Äm/s are the components of the 2nd fundamental form of x.

By the minimality of x, we find /zaN + ha22 = 0, 3 < a «S 5. From these formulae,

the Gauss equation is represented by

(2.1) l(h2a[X+h2al2) = c-K>0.
a

Therefore K = c occurs only when the immersion is totally geodesic. Hereafter we

assume c > K. That is, the vector valued 2nd fundamental form 2a(2 haijwj ® w-)en

does not vanish at any point of M2(K).

In this paper we use the theory of higher fundamental tensors developed in part 1

of [7]. Since Ogata pointed out that the proof of the rth (^ 3) order Codazzi

equation in [7] is not correct, we use only results for 2nd fundamental tensors from

[7]. However, the main theorems in [7 and 8] are valid.

We introduce some notation used in [7]. Let

(2.2) K(2) = ^{h2aXX+h2aX2),
a

(2.3) N(2)=\^haXXeaA^haX2ea\\

The nonnegative smooth function N,2) on M2(K) is the square of the area of the

parallelogram generated by 2 haXXea and 2 haX2ea. Suppose N,2) is identically zero on

M2(K). By a lemma of Otsuki [9, p. 96] (see also Lemma 2 in [7]), there exists a

3-dimensional totally geodesic submanifold M3(c) of M5(c) such that x(M2(K)) is

contained in M3(c) as a minimal surface. Then we have c > 0 and K = 0 by Chen

[3, Corollary 1].

In case iV(2) is not identically zero, the set S22 = [p E M2(K) : N,2)(p) ¥= 0} is

open in M2(K). Since 2 haXXea and 2 haX2ea are linearly independent at each point x

of Q2, the 2nd osculating space 7^2) is spanned by those vectors and e¡, K i <2.

We identify the first osculating space 7^", x E M2(K), with the tangent space of

M2(K). Let eA be local orthonormal frame fields such that e¡, 1 < / < 2, and ea,

3 < a < 4, span T}2\ x E Q2. Then on fi2 we have

(2.4) Wn = 0.
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By taking the exterior derivative of (2.4) and using the structure equation of M5(c),

we get wj3 A r>35 + wjA A r>45 = 0. This allows us to introduce the quantities hSiJk

defined by the equations

(2-5) 2^,7^5 = 2 ^¿»V

The h5ljk's are symmetric in the Latin indices i, /, k and are called components of

the 3rd fundamental form of x^,. By (2.5) and the minimality of x, we get

2/25„A = 0. Note that

(2.6) hilJk = h5iM

is easily verified by the definition of the covariant derivatives of httl/, since for

a > 3,

(2-7)       Dh„u = 2 hmjkwk = dhaiJ + 2 h„jwtl + 2 haiswsj + 2 hßlJwBa.

We set

(2.8) ^3) = Asm + *ii 12-

It is easily verified that K{}) is an invariant of x restricted to Í22 under the fixed

decomposition of the normal bundle, i.e., e5 is always considered as a normal vector

orthogonal to Tf2). We put^2) = K22) - 4N{2) and Ha = haXX + ihaX2. Then we have

(cf. [l])fxl) =| 2 H2 \2 and the Codazzi equation implies

(2.9) {d^H2 + 4i(2H2)wx2) A (wx - ,w2) - 0.

Therefore, by Lemma 3 of [7]

(2.10) Alogf{2) = 8K,

wherever f{2) =£ 0, and we get

(2-11) Ay;2) = 8/v7;2) + |^2)|2/y¡2).

In general, [7] gives

(2.12) -\aK(2) - -2N{2) + KKm + K&) +  2 (/i2,,., + h2aXX2).
a=£4

By (2.1), (2.2) and (2.12), we obtain

(2.13) \Dhm |2 + \Dh42X |2 = 2A(2) -K(c-K)- K(3).

3. Proof of Theorem 1. We assume x(M2(K)) is contained in a totally geodesic

submanifold M4(c) of M5(c). Then K<3) is identically zero by a lemma of Otsuki [9,

p. 96]. By virtue of (2.13), we have

(3.1) \Df2)\2 = 8(c - K)-lJ& - I6(c - 2K)f2x + 8(c - /:)2(c - 3^)/^.

In fact, (3.1) is trivial if f(2) is identically zero. We assume fl2) is not zero. Then there

exists an orthonormal frame eA for which haifs satisfy h3x2 — hAXX =0 and h3XX >

h4x2 > 0 on an open subset of S22 (cf. Wong [11, p. 480]). With respect to these frame

fields we have

(3.2) K(2) = h\xx + h\2X =c-K= constant;       N(2) = h\xxh\2x.
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Therefore we have, by (3.2) and (2.13),

\DN(2)\2 = 4h2xx(h22x-h2X]f\Dh 311

4h2   h2       r iH"3H"421     Í I . -i        .    .->     \2

*Íll+*421
{(h22X + h2xxf - 4h22Xh2m}(2N(2) - K(c - K))

= ^<2)K22) - 4Afo)(2JV(2) - K(c - K))/(c - K).

By definition of f(2) and (3.2), this implies (3.1).

Lemma 1. Let x : M2(K) -» M4(c) be an isometric minimal immersion with N{2) ¥= 0

on M2(K). Then we have K = c/3 and c > 0. Locally x is the Veronese surface in

M4(c).

Proof. If fa is identically zero on M2(K), then 1haXXea and 1hal2ea are

orthogonal and have the same nonzero length (cf. [7, p. 475]). By normalizing these

vectors, we adopt them as a part of the basis of Tf¿2), x E M2(K). For these new

frame fields, we have h3xx = h4x2 > 0, h3X2 = h4XX = 0. The Gauss equation implies

hl\\ = ^4i2 = (c ~~ K)/2 = constant > 0.

We have Dh3XX = dh3xx = 0 and 2w12 = w34, as seen by the formulas

Dh3u = A3n(2w12 - w34) = h3XX2wx - h3XXXw2 = 0.

Exterior differentiation of 2wX2 = w34 gives K = h3xxh42X. It follows from these

formulas that K = h\xx is positive, and we can see K — c/3 by (2.13), which implies

c>0.

It is known that such an immersion represents locally the Veronese surface (cf. for

instance [11, Theorem 4.2]).

Next we will show that the case of fa ¥= 0 cannot happen. By (2.11) and (3.1), we

obtain

(3.3)       äfa = 8(c - KY'fa - 8(2c - 5K)fa + 8(c - K)2(c - 3K).

If we set 6 — fa, then (3.1) and (3.3) are expressed in the following way: Af? = 4>(6),

[Dû? = /(#)> where <b(0) and f(6) are polynomials for 0 with constant coefficients.

It is then proved that 0 must be a constant function. If 6 is not constant then there

exist local coordinates (6, t) on M2(K) such that the first fundamental form is

ds2= [dO exphf<t>f-xde\dT2 \/f(0)

and the Gauss curvature K satisfies

(3.4) fK+(4>- /')(* - i/') + /(*' - i7") = 0,

where the prime denotes differentiation with respect to 6 (cf. Eisenhart [6, p. 164]).

The left-hand side of (3.4) is a polynomial in 6 such that the coefficients of 03 and 6

are 8(8c - 21K)/(c - K) and 8(c - K)2(c - 3K)(%c - 3K), respectively. Since

(3.4) is a nontrivial polynomial with constant coefficients, 0 must be a constant.

Therefore fa is a nonzero constant, which implies K = 0 by (2.10) and fa — c2 —

4N,2y By (3.3), we have^2) = c2, which is a contradiction because we have assumed

N,2) ¥= 0. This proves Lemma 1.
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We prove Theorem 1 as follows: If 7V(2) is identically zero, then x is totally

geodesic or we have K = 0 and c > 0. Moreover, in this case, x(M2(0)) is contained

in a 3-dimensional totally geodesic M3(c) as part of a Clifford surface [3].

When 7V(2) s 0 and K(3) s 0, we apply the above lemma to ß(2). Since fa is

identically zero on ß(2), N(2) is a positive constant on ß(2). Since ß(2) is open and

closed, we have ß(2) = M2(K), because M2(K) is connected by definition. Hence

Theorem 1 has been proved.

4. The 3rd fundamental form. In this section we study the case K,3) z 0, which

means that the minimal immersion x : M2(K) — M5(c) is full. We define covariant

derivation for the 3rd fundamental tensor (cf. [7]) by

(4.1)    Dh5ijk = ^h5IJk.,w, = dh5ijk + %h5sjkws, + 2 As***,; + 2*sy*w,*-

Exterior differentiation of (2.5) gives

(4-2) 2 h5IJk;,w, A wk = - 2 haiJlwai A w,.

When we set wa5 = 2 aajWj, (4.2) is equivalent to

i4-2)' h5ijk.j - hw,.k  =  2A«iy,/ö«Ä  -  2haij.kaal-

By (2.5) we have

(4-3) ^haUaak  = h5,jk-

Lemma 2. Let x : M2(K) -» M5(c) be a full isometric minimal immersion. Then the

3rd order Codazzi equations

(4-4) "Sijk-.l ~ "Sij/:k

hold if N{2) is constant on M2(K).

Proof, fa is constant on M2(K). If fa is zero, then we take frame fields eA such

that h3XX = h4X2 and h3x2 — h4XX = 0. In the case of fa ¥= 0, we take Y. C. Wong's

frame, for which h3XX > h4X2, h3X2 — h4XX — 0 (cf. [11, p. 480]). Since JV(2) is constant,

in both cases, h3XX and h42x are also locally constant, so Dh3lJ- = Dh4l = 0. It

follows that the right-hand side of (4.2)' vanishes.   Q.E.D.

Hereafter we assume 7V(2) is positive constant on M2(K). fa is also constant.

Since we have Dhaij = 0, by (2.13), Ä"(3) is constant. We take frame fields e¡ locally

for which h5xx2 vanishes on a neighborhood of M2(K). It shall be remarked that e3

and e4 are any vectors such that e¡, e3 and e4 are bases of T¿2). Since Kl3) = h\xxx +

h\XX2 is a nonzero constant, h5xxx is locally a nonzero constant. From the formulas

Dh5xxx = 0 and Dhixx2 = 3h5xxxwX2 = AJ111;2W, — h5xxx.xw2 = 0, which is derived by

Lemma 2, we get wX2 = 0. It implies K = 0 so c is positive by (2.1). Therefore

Lemma 2 in [8] holds, so x is locally a generalized Clifford surface of M5(c)

described in [8]. Summarizing, we get this result.

Theorem 2. Let x : M2(K) -» M5(c) be a full isometric minimal immersion with

7V(2) constant on M2(K). Then K=0 and c is positive. Locally x is one of the

generalized Clifford surfaces described in [8].
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Remarks. (1) If the rth (s* 3) fundamental tensors all satisfy the rth order

Codazzi equation, then we can prove a local classification theorem for minimal

immersions M2(K) -» Mm(c) by methods similar to those proving Theorem 1.

(2) Let x : M2(K) -* M5(c) be any full isometric minimal immersion. Then by

(2)
(2.13) we have | Dh3XX |2 + \Dh42X\2 <2N(2) - K(c - K). It follows that

(4.5) \Dfa\2 =£ 8(c - K)-lfa - 16(c - 2K)fa + 8(c - K)\c - 3K)fa,

(4.6) A fa < 8(c - í)"7¿ - 8(2c - 5K)fa + 8(c - /^)2(c - 3tf).

Under suitable assumptions on the topology of M2(K), the author conjectures that

the fa must be constant.
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