SUPPORT POINTS OF THE UNIT BALL OF H^p ($1 \le p \le \infty$)

YUSUF ABU-MUHANNA

ABSTRACT. The following results are obtained for the H^p class, over the open unit disc, whenever $1 \le p \le \infty$.

- (1) f is a support point of the unit ball of H^p , whenever $1 \le p < \infty$, if and only if $\|f\|_p = 1$ and f is of the form $f(z) = [Q(z)]^{2/p} \cdot W(z)$ where W(z) is a function analytic in the closed unit disc and nonvanishing on its boundary and Q(z) is either a nonzero constant or a polynomial with all of its zeros on the boundary of the unit disc.
- (2) f is a support point of the unit ball of H^{∞} if and only if f is a finite Blaschke product.
- 1. Introduction. Let $U = \{z: |z| < 1\}$, $\overline{U} = \{z: |z| \le 1\}$ and $\partial U = \{z: |z| = 1\}$. Denote by A the space of functions analytic in U with the topology of uniform convergence on compact subsets of U. Each continuous linear functional L on A is given by a function

(1)
$$K(z) = \sum_{n=0}^{\infty} \frac{b_n}{z^{n+1}}$$

analytic in $|z| > r_0$, for some $r_0 < 1$, with $\overline{\lim}_{n \to \infty} |b_n|^{1/n} < 1$ and so that

(2)
$$L(f) = \sum_{n=0}^{\infty} a_n b_n = \frac{1}{2\pi i} \int_{\substack{|z|=R\\r_0 < R < 1}} f(z) K(z) dz$$

where $f(z) = \sum_{n=0}^{\infty} a_n z^n \in A$ [5, p. 36].

A function f in a compact subset F of A is called a support point of F if there is a continuous linear functional L on A, with Re L nonconstant on F, so that Re $L(f) = \max_{g \in F} \operatorname{Re} L(g)$.

A function $f \in A$ is said to belong to the class H^p (0 if

$$||f||_p = \lim_{r \to 1} \left\{ \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \right\}^{1/p} < \infty.$$

The class of bounded analytic functions is denoted by H^{∞} and $||f||_{\infty} = \lim_{r \to 1} \max_{0 \le \theta < 2\pi} |f(re^{i\theta})|$. Each $f \in H^p$ has a radial limit $f(e^{i\theta})$ almost everywhere and $f(e^{i\theta}) \in L^p$.

Received by the editors December 9, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 30D55, 30D50.

Key words and phrases. Analytic function, continuous linear functional, H^p classes, support point, extreme point.

In a recent paper, D. J. Hallenbeck and T. H. MacGregor [2] showed that the set of support points of the unit ball of H^{∞} consists of all finite Blaschke products, that is, functions of the form

$$\prod_{1}^{n} \frac{z + \alpha_{k}}{1 + \overline{\alpha}_{k} z}$$

where $|\alpha_k| \leq 1$.

They also showed [2], by using the Cauchy-Schwarz inequality, that the set of support points of the unit ball of H^2 consists of all functions $f \in H^2$ that satisfy $||f||_2 = 1$ and analytic in \overline{U} . This led them [2] to ask the question of whether a similar result holds for the unit ball of H^p ($1 \le p < \infty$).

In §2, we determine that

(1) for $1 \le p < \infty$, f is a support point of the unit ball of H^p if and only if $||f||_p = 1$ and f is of the form

$$f(z) = [Q(z)]^{2/p} \cdot W(z)$$

where W is a function analytic in \overline{U} and nonvanishing on ∂U and Q(z) is either a nonzero constant or a polynomial with all of its zeros on ∂U . Furthermore, by a method different than the one in [2], we determine that

(2) for $p = \infty$, f is a support point of the unit ball of H^{∞} if and only if f is a finite Blaschke product.

2. Support points of the unit ball of H^p $(1 \le p \le \infty)$.

LEMMA 1. Let $f \in H^p$ and $g \in H^q$, where $p \ge 1$ and 1/p + 1/q = 1. Let K be a function analytic in $|z| > r_0$, for some $r_0 < 1$, and zf(z)(K(z) - g(z)) = R(z). Then

(5)
$$\lim_{r \to 1} \int_0^{2\pi} |rf(re^{i\theta})K(re^{i\theta}) - f(e^{i\theta})K(e^{i\theta})| d\theta = 0$$

and

(6)
$$\lim_{r\to 1}\int_0^{2\pi} |R(re^{i\theta})-R(e^{i\theta})|d\theta=0.$$

PROOF. We show (5) first and then (6) follows from (5) and the fact that $zf \cdot g \in H^1$ [1, p. 21]. To show (5) write

(7)
$$rf(re^{i\theta})K(re^{i\theta}) - f(e^{i\theta})K(e^{i\theta})$$

$$= rf(re^{i\theta}) + (K(re^{i\theta}) - K(e^{i\theta})) + K(e^{i\theta})(rf(re^{i\theta}) - f(e^{i\theta})).$$

Since K(z) is analytic near ∂U , thus uniformly continuous, we conclude that for any $\varepsilon > 0$ there is $1 > r_1 > r_0$ such that $|K(re^{i\theta}) - K(e^{i\theta})| < \varepsilon$, for all θ and all $r_1 < r \le 1$, and, furthermore, $|K(e^{i\theta})| \le M$ for all θ . This, (7) and the fact that $zf \in H^1$ imply statement (5).

Let L be a continuous linear functional on A defined as in (2). It follows immediately, from (5), that, whenever $f \in H^1$,

$$\lim_{r\to 1} \int_{|z|=r} f(z)K(z) dz = \int_{|z|=1} f(z)K(z) dz.$$

Hence (2) can be rewritten,

(8)
$$L(f) = \sum_{n=0}^{\infty} a_n b_n = \frac{1}{2\pi i} \int_{|z|=1} f(z) K(z) dz$$

whenever $f \in H^1$. Since $K(e^{i\theta})$ is continuous, it follows that [1, p. 132; 3, p. 134] there is a function $f \in H^p$ ($p \ge 1$) with $||f||_p = 1$ and a unique $g \in H^q$ (1/p + 1/q = 1) so that

(9)
$$|L(f)| = \max\{|L(h)|: h \in H^p, ||h||_p \le 1\} = ||K - g||_q = \inf_{h \in H^q} ||K - h||_q.$$

If p > 1, there is a unique f with the normalization L(f) > 0. Furthermore, in order that f (with Lf > 0) and g satisfy (9), it is necessary and sufficient that [1, p. 133]

(10)
$$e^{i\theta}f(e^{i\theta})(K(e^{i\theta}) - g(e^{i\theta})) \ge 0$$

for almost all θ , and that

(11)
$$|K(e^{i\theta}) - g(e^{i\theta})| = ||K - g||_{\infty} \text{ for almost all } \theta, \text{ if } p = 1,$$

(12)
$$|f(e^{i\theta})|^p = \frac{|K(e^{i\theta}) - g(e^{i\theta})|^q}{||K - g||_q^q} \quad \text{for almost all } \theta, \text{ if } 1$$

(13)
$$|f(e^{i\theta})| = 1$$
 almost everywhere on $\{\theta : K(e^{i\theta}) \neq g(e^{i\theta})\}$, if $p = \infty$.

LEMMA 2. Let $f \in H^p$ and $g \in H^q$, where $p \ge 1$ and 1/p + 1/q = 1. Let K(z) be a function analytic in $|z| > r_0$, for some $r_0 < 1$, and zf(z)(K(z) - g(z)) = R(z). If $R(e^{i\theta})$ is real, for almost all θ , then R(z) extends analytically across ∂U .

PROOF. It is clear that R(z) is analytic in $r_0 < |z| < 1$. On $1 < |z| < 1/r_0$, define $R(z) = \overline{R(1/\overline{z})}$. Radial limits of R(z) from both sides of ∂U are the same $(R(e^{i\theta}))$ almost everywhere. Let $C_{r_1} = \{z: |z| = r_1\}$ and $D_{r_1} = \{z: |z| = 1/r_1\}$, where $r_0 < r_1 < 1$. Consider

$$F(z) = \frac{1}{2\pi i} \int_{D_{c}} \frac{R(w)dw}{w - z} - \frac{1}{2\pi i} \int_{C_{c}} \frac{R(w)dw}{w - z},$$

since R(z) is analytic on C_{r_1} and D_{r_1} , F(z) is analytic in $r_1 < |z| < 1/r_1$. For $1 > r > r_0/r_1$, the function R(rz) is analytic in $r_1 \le |z| \le 1$. Hence

$$\frac{1}{2\pi i} \int_{\partial U} \frac{R(rw)dw}{w-z} - \frac{1}{2\pi i} \int_{C_r} \frac{R(rw)dw}{w-z}$$

equals R(rz) when $r_1 < |z| < 1$ and zero when |z| > 1. Then we conclude, by using (6), that

$$\frac{1}{2\pi i} \int_{\partial U} \frac{R(w)dw}{w-z} - \frac{1}{2\pi i} \int_{C_z} \frac{R(w)dw}{w-z}$$

equals R(z) when $r_1 < |z| < 1$ and zero when |z| > 1. Similarly, one can conclude that

$$\frac{1}{2\pi i} \int_{D_n} \frac{R(w)dw}{w-z} - \frac{1}{2\pi i} \int_{\partial U} \frac{R(w)dw}{w-z}$$

equals R(z) when $1 < |z| < 1/r_1$ and zero when |z| < 1. Therefore, F(z) = R(z) for all z such that $r_1 < |z| < 1/r_1$ and $|z| \ne 1$. Thus R(z) extends analytically across ∂U .

LEMMA 3. Let R(z) be a function analytic in $r_0 < |z| < t$, where $r_0 < 1$ and t > 1. If R(z) does not vanish on ∂U then

(14)
$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log |R(e^{it})| dt$$

is analytic on \overline{U} .

PROOF. f is analytic in U. The fact that R(z) is analytic and nonvanishing on ∂U implies that $\log |R(e^{i\theta})|$ is continuously differentiable and consequently $f(e^{i\theta})$ is continuous for all θ [4, p. 26].

Let $z_0 \in \partial U$ and let Δ be a small disc centered at z_0 so that R(z) is analytic and does not vanish on $\overline{\Delta}$. Thus $\log R(z)$ has an analytic branch in Δ . (14) implies that $\operatorname{Re} f(z) = \operatorname{Re} \log R(z)$, for all $z \in \Delta \cap \partial U$. In other words, $i(f(z) - \log R(z))$ is real for all $z \in \Delta \cap \partial U$. This and the continuity of $f(z) - \log R(z)$, on $\Delta \cap \partial U$, give that $f(z) - \log R(z)$ can be continued analytically across $\Delta \cap \partial U$. Since $\log R(z)$ is analytic on $\Delta \cap \partial U$, f(z) is analytic on $\Delta \cap \partial U$, and, in particular, at z_0 .

LEMMA 4. Let B_n be a finite Blaschke product, Q either a nonzero constant or a polynomial with all of its zeros on ∂U and h a nonvanishing analytic function on \overline{U} . Let

$$K_1(e^{i\theta}) = \frac{1}{e^{i\theta}B_n(e^{i\theta})} \cdot \frac{|Q(e^{i\theta})|^2}{[Q(e^{i\theta})]^{2/p}} \cdot \frac{|h(e^{i\theta})|^p}{h(e^{i\theta})} \qquad (1 \le p < \infty).$$

Then there are functions g and K such that $g \in H^{\infty}$, K is analytic in $|z| > r_0$, for some $r_0 < 1$, $K(\infty) = 0$ and $K_1(e^{i\theta}) = g(e^{i\theta}) + K(e^{i\theta})$.

PROOF. It is clear that $1/zB_n(z)$ is analytic in a neighborhood of ∂U . Write

$$Q(z) = c \prod_{j=1}^{m} (z - \alpha_j) \qquad (|\alpha_j| = 1).$$

Hence

$$|Q(e^{i\theta})|^2 = \frac{c_1}{e^{im\theta}} \prod_{j=1}^m (e^{i\theta} - \alpha_j)^2$$
 (c_1 is constant).

Let

$$l(z) = \frac{c_1}{z^m} \prod_{j=1}^m (z - \alpha_j)^2 \qquad (z \in U).$$

l is an analytic function in $\frac{1}{2} \le |z| \le 1$ and $l(e^{i\theta}) = |Q(e^{i\theta})|^2$. Since $Q(z) \ne 0$ for every $z \in U$, it follows that $[Q(z)]^{2/p}$ has a nonvanishing analytic branch. This, and the condition $p \ge 1$, imply that $l(z)/[Q(z)]^{2/p}$ is analytic and bounded in $\frac{1}{2} \le |z| < 1$.

Let $S(z) = \overline{[h(\bar{z})]^{p/2}}$. S is analytic on \overline{U} because h is analytic and nonvanishing on \overline{U} . Also

$$S(e^{-i\theta})[h(e^{i\theta})]^{p/2} = |h(e^{i\theta})|^p$$
.

Now, if we let

$$F(z) = \frac{1}{zB_n(z)} \cdot \frac{l(z)}{\left[Q(z)\right]^{2/p}} \cdot \frac{S(1/z) \cdot \left[h(z)\right]^{p/2}}{h(z)},$$

then F is a bounded analytic function in $r_0 < |z| < 1$, for some $r_0 < 1$, and $F(e^{i\theta}) = K_1(e^{i\theta})$. Furthermore, F has a Laurent expansion

$$F(z) = \sum_{j=0}^{\infty} a_j z^j + \sum_{j=0}^{\infty} \frac{b_j}{z^{j+1}} = g(z) + K(z)$$

where g is analytic in U and K is analytic in $|z| > r_0$. Since F is bounded and K is analytic on ∂U , it follows that $g \in H^{\infty}$.

We come now to the main result of the paper.

THEOREM 5. (a) f is a support point of the unit ball of H^p , where $1 \le p < \infty$, if and only if, $||f||_p = 1$ and f is of the form

(15)
$$f(z) = [Q(z)]^{2/p} \cdot W(z)$$

where Q is either a nonzero constant or a polynomial with all of its zeros on ∂U and W is a function analytic on \overline{U} and nonvanishing on ∂U .

(b) f is a support point of the unit ball of H^{∞} if and only if, f is a finite Blaschke product.

PROOF. (i) Suppose that f is a support point of the unit ball of H^p $(1 \le p \le \infty)$. There is a continuous linear functional L on A so that

$$Re L(f) = max\{Re L(h): h \in H^p, ||h||_p \le 1\}$$

and Re L is nonconstant. Since $e^{i\lambda}f \in H^p$ for any real λ , it follows that f also maximizes |L|. Assume that L(f) > 0. Let K(z) be the function associated with L, as given by (1) and (2). Then there is a unique $g \in H^q$ (1/p + 1/q = 1) so that f and g satisfy relations (9) through (13). Let

(16)
$$R(z) = zf(z)(k(z) - g(z)).$$

R(z) is analytic in some neighborhood of ∂U , by (10) and Lemma 2. Also, by (11), (12) and (16) we have, for $1 \le p < \infty$, the relations

(17)
$$|f(e^{i\theta})| = \frac{\left(R(e^{i\theta})\right)^{1/p}}{\|K - g\|_{\alpha}^{1/p}} \quad \text{for almost all } \theta$$

and

(18)
$$|K(e^{i\theta}) - g(e^{i\theta})| = ||K - g||_{\theta}^{1/p} (R(e^{i\theta}))^{1/q} \quad \text{for almost all } \theta.$$

Hence we conclude, when $1 \le p < \infty$, that f and g are bounded functions. When $p = \infty$, f is bounded and so the analyticity of R(z) implies that $K(e^{i\theta}) - g(e^{i\theta}) \ne 0$ almost everywhere. Consequently, (13) implies that $|f(e^{i\theta})| = 1$ for almost all θ and then (16) implies that g is bounded. Therefore f and g are bounded for all $1 \le p \le \infty$.

If the zeros of f have an accumulation point on ∂U , then R(z) would have zeros with an accumulation point on ∂U . This is impossible, because R(z) is analytic in some neighborhood of ∂U . Thus, f has a finite number of zeros in U.

Let S(z) be the singular inner factor of f. If S(z) was not identically 1 then S(z) would have either a zero of infinite order or an infinite number of zeros on ∂U [3, p. 76]. Since f and K - g are bounded on ∂U , R(z) would also have either a zero of infinite order or an infinite number of zeros on ∂U . But R(z) is analytic on ∂U , so $S(z) \equiv 1$.

Hence f can be written

$$f(z) = B_n(z)f_1(z)$$

where $B_n(z)$ is a finite Blaschke product and $f_1(z)$ is an outer function. Since $R(z) \ge 0$ on ∂U , it follows that each zero of R(z), on ∂U (if there is any) is an even order zero. Hence R(z) can be written

(20)
$$R(z) = \prod_{k=1}^{m} (z - \alpha_k)^2 \cdot R_1(z)$$

where $|\alpha_k|=1$, for $k=1,2,\ldots,m$ and $R_1(z)$ is analytic and does not vanish on ∂U . When $p=\infty,|f(e^{i\theta})|=1$ almost everywhere. This and (19) imply that $f(z)=B_n(z)$ which is part (b). Assume for the rest of (i) that $1 \le p < \infty$. We conclude, by (17) and (19), that

$$f_1(z) = C \exp \left\{ \frac{1}{2\pi p} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log |R(e^{it})| dt \right\}$$

where C is a constant. Combine this with (20) to get

$$f_1(z) = C \prod_{k=1}^{m} (z - \alpha_k)^{2/p} \cdot \exp \left\{ \frac{1}{2\pi p} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log |R_1(e^{it})| dt \right\}.$$

So, by Lemma 3,

$$f_1(z) = C \prod_{k=1}^{m} (z - \alpha_k)^{2/p} \cdot h(z)$$

where h(z) is nonzero and analytic on \overline{U} . In specific, $f_1(z) = ch(z)$ in case R(z) has no zero on ∂U . Write $W(z) = CB_n(z) \cdot h(z)$ to get statement (15).

(ii) Conversely, suppose that f has the form (15) and $||f||_p = 1$, where $1 \le p < \infty$. Write $W = B_n h$, where B_n is a finite Blaschke product and h is a nonvanishing analytic function on \overline{U} . Let

(21)
$$K_{1}(e^{i\theta}) = \frac{|f(e^{i\theta})|^{F}}{e^{i\theta}f(e^{i\theta})}.$$

Then

$$K_{1}(e^{i\theta}) = \frac{1}{e^{i\theta}f(e^{i\theta})} \cdot \frac{|Q(e^{i\theta})|^{2}}{[Q(e^{i\theta})]^{2/p}} \cdot \frac{|h(e^{i\theta})|^{p}}{h(e^{i\theta})}$$

and consequently, by Lemma 4, $K_1(e^{i\theta}) = g(e^{i\theta}) + K(e^{i\theta})$, where g and K are as in the Lemma. Let L be the continuous linear functional on A given by K, as in (2). (8) and the fact that $g \in H^{\infty}$ imply that

(22)
$$L(G) = \frac{1}{2\pi i} \int_{|z|=1} G(z) K_1(z) dz$$

for every $G \in H^p$ ($p \ge 1$). (21) implies that $|f(e^{i\theta})|^p = |K_1(e^{i\theta})|^q (1/p + 1/q = 1)$, for $1 , and <math>|K_1(e^{i\theta})| = 1$ for p = 1. Hence we conclude that

$$|L(G)| \le ||G||_p \le 1 \qquad (1 \le p < \infty)$$

for every G in the unit ball of H^p . Also, by (21) and (22), we have $L(f) = ||f||_p^p = 1$. Therefore f is a support point of the unit ball of H^p .

When $p = \infty$, let f be a finite Blaschke product and

$$K_1(e^{i\theta}) = \frac{1}{e^{i\theta}f(e^{i\theta})}.$$

Apply Lemma 4 and then construct L as above to conclude that f is a support point of the unit ball of H^{∞} .

REMARKS. 1. Every point on the boundary of the unit ball of H^p $(1 is an extreme point. Hence the set of support points of the unit ball of <math>H^p$ (1 is much more restricted than the set of extreme points.

2. Extreme points of the unit ball of H^{∞} are characterized by

$$\int_0^{2\pi} \log(1-|f(e^{i\theta})|) d\theta = -\infty.$$

Hence the set of support points of the unit ball of H^{∞} is much more restricted than the set of extreme points.

3. Extreme points of the unit ball of H^1 are characterized by $||f||_1 = 1$ and f is outer. So the set of extreme points is not a subset of the set of support points. f(z) = z is a support point but not an extreme point. Thus, the set of support points is not, also, a subset of the set of extreme points.

I would like to thank the referee for suggesting the argument for the converse of Theorem 5.

ACKNOWLEDGMENT. I finally would like to thank the University of Petroleum and Minerals for their support and encouragement.

REFERENCES

- 1. P. L. Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- 2. D. J. Hallenbeck and T. H. MacGregor, Support points of families of analytic functions described by subordination (to appear).
 - 3. J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
 - 4. P. Koosis, Introduction to H^p spaces, Cambridge Univ. Press, Cambridge, London, 1980.
- 5. G. Schober, *Univalent functions—selected topics*, Lecture Notes in Math., vol. 478, Springer-Verlag, Berlin, Heidelberg, New York, 1975.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF PETROLEUM AND MINERALS, DHAHRAN, SAUDI ARABIA