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SUPPORT POINTS OF THE UNIT BALL OF W (1< p *£ oo)

YUSUF ABU-MUHANNA

Abstract. The following results are obtained for the Hp class, over the open unit

disc, whenever 1 °c p « oo.

(1)/is a support point of the unit ball of Hp, whenever 1 «/? < oo, if and only if

U/H, = i and / is of the form f(z) = [Q(z)]2/p ■ W(z) where W(z) is a function

analytic in the closed unit disc and nonvanishing on its boundary and Q(z) is either

a nonzero constant or a polynomial with all of its zeros on the boundary of the unit

disc.

(2)/is a support point of the unit ball of H°° if and only if/is a finite Blaschke

product.

1. Introduction. Let U= {z: \z\< 1}, ¿7 = {z: \z\< 1} and W= {z: \z\= 1}.

Denote by A the space of functions analytic in U with the topology of uniform

convergence on compact subsets of U. Each continuous linear functional L on A is

given by a function

0) K(z)=l-^
n = 0 z

analytic in | z |> r0, for some r0 < 1, with lim„ J001 b„ \w" < 1 and so that

00 1 t

(2) ¿(/) =   2 «"A = 2=7     /    fU)KU)dz
n = 0 \z\ = R

r0<R<l

where/(z) = 2~=0a„2" G /I [5, p. 36].

A function / in a compact subset F of A is called a support point of F if there is a

continuous linear functional L on A, with ReL nonconstant on F, so that ReL(/)

= maxgGFRe L(g).

A function/ E A is said to belong to the class Hp (0 < p < oo) if

ii/iip=iim{^/o2'ri/(^)r^},/'<&o.

The class of bounded analytic functions is denoted by H°° and \\f\\x =

limr^, max0e9<2w \f(re'e) \. Each/ E iP has a radial Unfit/(e,s) almost everywhere

and/(e") E £/.
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In a recent paper, D. J. Hallenbeck and T. H. MacGregor [2] showed that the set

of support points of the unit ball of H°° consists of all finite Blaschke products, that

is, functions of the form

(3) "tt^

where |«¿|< 1.

They also showed [2], by using the Cauchy-Schwarz inequality, that the set of

support points of the unit ball of H2 consists of all functions f E H2 that satisfy

||/||2 = 1 and analytic in U. This led them [2] to ask the question of whether a

similar result holds for the unit ball of Hp (1 < p < oo).

In §2, we determine that

(1) for 1 </? < oo, / is a support point of the unit ball of Hp if and only if

11/11   = 1 and/is of the form

(4) ' f(z) =_[Q(z)]2/p- W(z)

where IF is a function analytic in U and non vanishing on 9Í7 and Q(z) is either a

nonzero constant or a polynomial with all of its zeros on dU. Furthermore, by a

method different than the one in [2], we determine that

(2) for p = oo, /is a support point of the unit ball of H°° if and only if/is a finite

Blaschke product.

2. Support points of the unit ball of Hp (1 < p < oo).

Lemma 1. Let f E Hp and g E Hq, where p > 1 and l/p + l/q = 1. Let K be a

function analytic in \ z \> r0, for some r0 < 1, and zf(z)(K(z) — g(z)) = R(z). Then

(5) lim ¡2"\rf(re'e)K(reiB) - f(eif)K(eie)\d$ = 0
r-\ J0

and

(6) lim [   \R(reie) - R(ei6)\d0 = 0.
r-\JQ

Proof. We show (5) first and then (6) follows from (5) and the fact that

zf-g E Hx [l,p. 21]. To show (5) write

(7) rf(reie)K(re'e) - f(ei9)K(eie)

= rf(reie) + (K(re'e) - K(e">)) + K(ei$)(rf(reie) -/(*")).

Since K(z) is analytic near dU, thus uniformly continuous, we conclude tnat for any

e > 0 there is 1 > rx > r0 such that | K(reie) - K(eie) |< e, for all 0 and all r, < r < 1,

and, furthermore, \K(ei8)\< M for all 6. This, (7) and the fact that z/E Hl imply

statement (5).

Let L be a continuous linear functional on A defined as in (2). It follows

immediately, from (5), that, whenever/ E H\

Um/    f(z)K(z)dz= f    f(z)K(z)dz.
'•->l-'|z| = r -V|=l
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Hence (2) can be rewritten,

00 i

„=o 2^^l=i

whenever/E i/1. Since K(e'e) is continuous, it follows that [l,p. 132; 3,p. 134]

there is a function/ E Hp (p> I) with H/l^ = 1 and a unique g E Hq (l/p + l/q

= 1) so that

(9) |L(/)| = max{|L(A)|:AG/íM|%<l}=||í:-g||,=   inf ||tf - h\\q.
heH"

If p > I, there is a unique/with the normalization L(/) > 0. Furthermore, in order

that/(with Lf > 0) and g satisfy (9), it is necessary and sufficient that [1, p. 133]

(10) ei9f(e«)(K(e*)-g{ei9))>0

for almost all 6, and that

(11) ■ \K(e'e)-g(eie)\=\\K-g\\x    for almost all 0, if p = 1,

\K(ei$) - z(e'e)V
(12) \f(e")f= '     *.\q for almost all«, if Kp< oo,

IIa ~~ £11,

(13) |/(e/9)|= 1    almost everywhere on [6: K(e'e) ¥= g(e'")},ifp = 00.

Lemma 2. Letf E Hp and g E Hq, where p > 1 and l/p + l/q = 1. Let K(z) be a

function analytic in \z\> r0, for some r0 < 1, and zf(z)(K(z) — g(z)) — R(z). If

R(e'e) is real, for almost all 6, then R(z) extends analytically across dU.

Proof. It is clear that R(z) is analytic in r0<\z\< 1. On 1 <|z|< l/r0, define

R(z) = R(l/z). Radial limits of R(z) from both sides of W are the same (R(ei9))

almost everywhere. Let Cr = {z:\z \— rx} and Dr = {z: | z |= 1/r,}, where r0 < rx <

1. Consider

R(w)dw 1    r   R(w)dwlyMïL*-,!/
277/ JD       W — Z ZTTl Jc

since R(z) is analytic on Cr   and Dr, F(z) is analytic in rx <\z\< l/rx.  For

1 > r > r0/rx, the function R(rz) is analytic in r, *£|z |< 1. Hence

1    r   R(rw)dw 1    r   R(rw)dw

liri Jw   w — z 2iri Jc     w — z

equals R(rz) when rx <|z|< 1 and zero when |z|> 1. Then we conclude, by using

(6), that

J_ r   R(w)dw 1    f   R(w)dw

hu

r   R(w)dw _      1     r

Jan   w — z 2tri Jr2m'

equals R(z) when r, <|z|< 1 and zero when |z|> 1. Similarly, one can conclude

that

J_ r   R(w)dw __!_/■   R(w)dw

liri Jn    w — z 2tri A,,   w — z
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equals R(z) when 1 <|z|< 1/r, and zero when |z|< 1. Therefore, F(z) — R(z) for

all z such that r, <|z|< 1/r, and \z\¥= 1. Thus R(z) extends analytically across 3*7.

Lemma 3. Let R(z) be a function analytic in r0 <|z|< t, where r0 < 1 and t > I. If

R(z) does not vanish on dU then

(14) /(z) = -\- /2"£l±£log|/?(e")|di
¿Tt Jq    e" — z

is analytic on U.

Proof./is analytic in U. The fact that R(z) is analytic and nonvanishing on dU

impües that log\R(e'9)\ is continuously differentiable and consequently f(e'9) is

continuous for all 6 [4, p. 26].

Let z0 E dU and let A be a small disc centered at z0 so that R(z) is analytic and

does not vanish on A. Thus log R(z) has an analytic branch in A. (14) implies that

Re/(.z) = RelogÄ(z), for all z E A n W. In other words, i(f(z) - log R(z)) is

real for all z E A n W. This and the continuity of f(z) — log R(z), on A n W, give

that/(z) — log R(z) can be continued analytically across A n dU. Since log R(z) is

analytic on A n dU, f(z) is analytic on A n 9¿7, and, in particular, at z0.

Lemma 4. Let Bn be a finite Blaschke product, Q either a nonzero constant or a

polynomial with all of its zeros on dU and h a nonvanishing analytic function on U. Let

Then there are functions g and K such that g E H00, K is analytic in \ z \> r0, for some

r0 < 1, AT(oo) = 0 and Kx(ei9) = g(e'9) + K(ei9).

Proof. It is clear that l/zi?„(z) is analytic in a neighborhood of dU. Write

Hence

Let

Q(z) = c u (z - «,)       (|«y|= 1).
7=1

I ß(g,i) I' = -it» u (^'S - «y)'       (c, is constant).
e      ;=i

/<*) = i n (* - «y)2     Uei/).
z  /=i

/ is an analytic function in | <|z(< 1 and /(e'9) =|ô(e'*)|2. Since ß(z) ^0 for

every z E £/, it follows that [Q(z)]2/p has a nonvanishing analytic branch. This, and

the condition/? > 1, imply that l(z)/[Q(z)]2/p is analytic and bounded in {- <| z |< 1.

Let 5(z) = [^(z)]^ . S is analytic on U because h is analytic and nonvanishing

on U. Also

S(e-i9)[h(ei9)]p/2 =\h(ei9))>>.
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Now, if we let

= _L_        /(z) S(l/z)-[A(z)]p/2

1  '      zBn(z)    [Q(z)]2/p h(z)

then F is a bounded analytic function in r0 <\ z \< I, for some r0 < 1, and F(e'9) =

Kx(e'9). Furthermore, F has a Laurent expansion

OO 00 U

F(z)=   lajZJ+   2 -^=g(z) + /c"(z)
y=0 7 = 0 2

where g is analytic in U and K is analytic in |z |> r0. Since F is bounded and K is

analytic on W, it follows that g E H°°.

We come now to the main result of the paper.

Theorem 5. (a) / is a support point of the unit ball of Hp, where 1 < p < oo, if and

only if-, \\f\\p = 1 and fis of the form

(15) f(z)=[Q(z)]2/p-W(z)

where Q is either a nonzero constant or a polynomial with all of its zeros on dU and W

is a function analytic on U and nonvanishing on dU.

(b) f is a support point of the unit ball of H°° if and only if, f is a finite Blaschke

product.

Proof, (i) Suppose that / is a support point of the unit ball of Hp (1 ^ p < oo).

There is a continuous linear functional L on A so that

ReL(/) = max(ReL(/i):A E Hp, \\h\\p < l}

and ReL is nonconstant. Since e'xf E Hp for any real A, it follows that / also

maximizes |L|. Assume that L(f) > 0. Let K(z) be the function associated with L,

as given by (1) and (2). Then there is a unique g E Hq (l/p + l/q = 1) so that /

and g satisfy relations (9) through (13). Let

(16) R(z) = zf(z)(k(z)-g(z)).

R(z) is analytic in some neighborhood of W, by (10) and Lemma 2. Also, by (11),

(12) and (16) we have, for 1 < p < oo, the relations

(17) \f(e")\= K   y     }\t      for almost all 6
\\K-g\\Y"

and

(18) \K(ei9)-g(ei9)\=\\K-g\\x/»(R(e'9))X/q   for almost all 6.

Hence we conclude, when 1 < p < oo, that / and g are bounded functions. When

p = oo,/is bounded and so the analyticity of R(z) implies that K(e'9) — g(e'9) ¥= 0

almost everywhere. Consequently, (13) imphes that \f(e'9)\= 1 for almost all 0 and

then (16) imphes that g is bounded. Therefore / and g are bounded for all

1 </>< oo.
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If the zeros of/have an accumulation point on dU, then R(z) would have zeros

with an accumulation point on 9Í/. This is impossible, because R(z) is analytic in

some neighborhood of 9Í7. Thus,/has a finite number of zeros in U.

Let S(z) be the singular inner factor off. If S(z) was not identically 1 then S(z)

would have either a zero of infinite order or an infinite number of zeros on 9/7 [3, p.

76]. Since / and K — g are bounded on 3(7, R(z) would also have either a zero of

infinite order or an infinite number of zeros on W. But R(z) is analytic on 3(7, so

S(z) = 1.

Hence/can be written

(19) /(z) = 5„(z)/,(z)

where Bn(z) is a finite Blaschke product and fx(z) is an outer function. Since

R(z) > 0 on 9Í/, it follows that each zero of R(z), on 9(7 (if there is any) is an even

order zero. Hence R(z) can be written

m

(20) R(z)=   \[(z-ak)2-Rx(z)
k=\

where |<xk|= 1,for k = 1,2,...,m and Rx(z) is analytic and does not vanish on W.

When/? = oo, \f(e'9)\= 1 almost everywhere. This and (19) imply that/(z) = B„(z)

which is part (b). Assume for the rest of (i) that 1 < p < oo. We conclude, by (17)

and (19), that

/1(z) = CexP{^/;^log|/?(e")l^

where C is a constant. Combine this with (20) to get

hi*) = C ñ (z - ak)2/F-^y^J2Je-^log\Rx(e'')\d^.

So, by Lemma 3,

fx(z) = C\[(z-ak)2/>>-h(z)
k=\

where h(z) is nonzero and analytic on U. In specific,/,(z) = ch(z) in case R(z) has

no zero on W. Write W(z) = CBn(z) ■ h(z) to get statement (15).

(ü) Conversely, suppose that/has the form (15) and \\f\\p = 1, where 1 </? < oo.

Write W= Bnh, where Bn is a finite Blaschke product and h is a nonvanishing

analytic function on U. Let

Then

He'9)

ei9f(e'9)

ß(e'")|2     |*(e»)r

*"f(e")    [Q(ei9)]2/P     He")
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and consequently, by Lemma 4, Kx(e'9) = g(e'9) + K(e'9), where g and K are as in

the Lemma. Let L be the continuous linear functional on A given by K, as in (2). (8)

and the fact that g E Hx imply that

(22) L(G)=^-f     G(z)Kx(z)dz
¿Til J\z\= 1

for every GEHp(p> 1). (21) implies that \f(e'9)\p =\Kx(eie)\> (l/p + l/q = 1),

for 1 <p < oo, and \Kx(e'9)\— 1 foxp — 1. Hence we conclude that

¡¿(G)|<||<7||,<1       (!</>< oo)

for every G in the unit ball of Hp. Also, by (21) and (22), we have L(f) = \\f\\p = 1.

Therefore/is a support point of the unit ball of Hp.

When/? = oo, let/be a finite Blaschke product and

j

*l(e' ) = eMfie")"

Apply Lemma 4 and then construct L as above to conclude that / is a support point

of the unit ball of Hx.

Remarks. 1. Every point on the boundary of the unit ball of Hp (1 </? < oo) is

an extreme point. Hence the set of support points of the unit ball of Hp (1 < p < oo)

is much more restricted than the set of extreme points.

2. Extreme points of the unit ball of H°° are characterized by

/2*log(i- \f{e»)\)dO = -oo.

Hence the set of support points of the unit ball of H°° is much more restricted than

the set of extreme points.

3. Extreme points of the unit ball of Hx are characterized by ||/||, = 1 and /is

outer. So the set of extreme points is not a subset of the set of support points.

f(z) = z is a support point but not an extreme point. Thus, the set of support points

is not, also, a subset of the set of extreme points.

I would like to thank the referee for suggesting the argument for the converse of

Theorem 5.
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