THE COMBINATORICS OF CERTAIN PRODUCTS

DON RAWLINGS

Abstract. A combinatorial interpretation for the coefficients in the expansion of $\Pi\left(1+u x^{j} y^{k}\right)\left(1-u x^{j} y^{k}\right)^{-1}$ is given.

1. Introduction. The coefficients $A(n ; x, y), B(n ; x, y)$ and $C(n ; x, y)$ defined by

$$
\begin{align*}
& \sum_{n \geqslant 0} \frac{A(n ; x, y) u^{n}}{(x)_{n}(y)_{n}}=\frac{1}{(u ; x, y)} \tag{1.1}\\
& \sum_{n \geqslant 0} \frac{B(n ; x, y) u^{n}}{(x)_{n}(y)_{n}}=(-u ; x, y) \tag{1.2}\\
& \sum_{n \geqslant 0} \frac{C(n ; x, y) u^{n}}{(x)_{n}(y)_{n}}=\frac{(-u ; x, y)}{(u ; x, y)}, \tag{1.3}
\end{align*}
$$

where

$$
\begin{gather*}
(x)_{n}=(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{n}\right), \quad(x)_{0}=1, \tag{1.4}\\
(u ; x, y)=\prod_{j, k \geqslant 0}\left(1-u x^{j} y^{k}\right), \tag{1.5}
\end{gather*}
$$

have been considered by a number of mathematicians. Carlitz [2] was the first to demonstrate that these coefficients are polynomials in x and y with positive integral coefficients and provided closed formulas for calculating them. In a subsequent paper Roselle [6] gave combinatorial interpretations for $A(n ; x, y)$ and $B(n ; x, y)$. More recently, generalizations of (1.1) and (1.2) have appeared in [3,4,5] and [4], respectively.

A natural question, which was suggested to me by Dominique Foata, arises from Roselle's work: Is there a combinatorial interpretation for $C(n ; x, y)$? This note provides one in terms of the already known interpretations of $A(n ; x, y)$ and $B(n ; x, y)$ and in terms of certain statistics defined on bicolored permutations.
2. Roselle's work. The polynomials $A(n ; x, y)$ and $B(n ; x, y)$ may be interpreted as the generating functions for various statistics defined on the group $G(n)$ consisting of permutations of $\{1,2, \ldots, n\}$. To be precise, if the major index of a permutation $\sigma \in G(n)$, denoted $m(\sigma)$, is defined to be the sum of the elements in the set

$$
\begin{equation*}
\{j: \sigma(j)>\sigma(j+1), 1 \leqslant j \leqslant n-1\} \tag{2.1}
\end{equation*}
$$

[^0]and the i-major and co- i-major indices are defined, respectively, to be
\[

$$
\begin{gather*}
i(\sigma)=m\left(\sigma^{-1}\right), \tag{2.2}\\
c(\sigma)=\binom{n}{2}-i(\sigma), \tag{2.3}
\end{gather*}
$$
\]

then, as Roselle [6] and Foata [4] have demonstrated,

$$
\begin{align*}
& A(n ; x, y)=\sum_{\sigma \in G(n)} x^{m(\sigma)} y^{i(\sigma)}, \tag{2.4}\\
& B(n ; x, y)=\sum_{\sigma \in G(n)} x^{m(\sigma)} y^{c(\sigma)} . \tag{2.5}
\end{align*}
$$

3. Bicolored permutations. Since Carlitz [2] showed that $C(n ; 1,1)=2^{n} \cdot n!$, it is clear that $G(n)$ will not provide a combinatorial structure for interpreting $C(n ; x, y)$. For this reason, one is led to consider the set of bicolored permutations $B G(n)$, consisting of words $b=b(1) b(2) \cdots b(n)$ obtained by coloring each letter of some permutation $\sigma=\sigma(1) \sigma(2) \cdots \sigma(n) \in G(n)$ either red (indicated by underlining the letter) or blue (letter not underlined). For instance,

$$
\begin{equation*}
b=3 \underline{2} 7 \underline{4} \underline{1} \underline{6} 5 \in B G(7) . \tag{3.1}
\end{equation*}
$$

Note that there are 2^{n} different colorings of each $\sigma \in G(n)$.
Now, possessing a combinatorial set with the correct cardinality, all that remains is to define some appropriate statistics on $B G(n)$ for which $C(n ; x, y)$ is the generating function. To this end, let $W(n)$ be the set of words $w=w(1) w(2) \cdots w(n)$ of length n with letters $w(i) \in\{0,1\}$, and let $|w|$ denote the number of letters equal to 1 in w. The reduction of a permutation γ of $\left\{a_{1}<a_{2}<\cdots<a_{n}\right\}$ is obtained by replacing a_{i} in γ by i for $1 \leqslant i \leqslant n$. For instance, the reduction of the permutation $\gamma=2416$ of $\{1<2<4<6\}$ is 2314 .

Each $b \in B G(n)$ is now assigned to a 4-tuple (w, v, θ, α) where $w, v \in W(n)$ with $|w|=|v|, \theta \in G(|w|)$ and $\alpha \in G(n-|w|)$ according to the following rules:

$$
\begin{equation*}
\theta=\text { reduction of the red subpermutation of } b \tag{3.4}
\end{equation*}
$$

$$
\begin{align*}
& w(i)= \begin{cases}1 & \text { if } b(i) \text { is red } \\
0 & \text { otherwise }\end{cases} \tag{3.2}\\
& v(i)= \begin{cases}1 & \text { if } i \text { is red in } b \\
0 & \text { otherwise }\end{cases} \tag{3.3}
\end{align*}
$$

$\alpha=$ reduction of the blue subpermutation of b.
Roughly speaking, w indicates which positions of b are red, v which elements of $\{1,2, \ldots, n\}$ are placed in the red positions, θ how the red letters are arranged in the red positions, and α how the blue letters are placed in the remaining positions. For instance, the bicolored permutation b of (3.1) corresponds to the 4-tuple (w, v, θ, α) where $w=0101110, v=1101010, \theta=2314$ and $\alpha=132$. Note that the map $b \rightarrow(w, v, \theta, \alpha)$ is a bijection between $B G(n)$ and the set of such 4-tuples.

Finally, for the bicolored permutation $b \rightarrow(w, v, \theta, \alpha)$ the appropriate statistics are defined by

$$
\begin{gather*}
M(b)=m(\theta)+m(\alpha)+m(w) \tag{3.6}\\
I(b)=i(\theta)+c(\alpha)+m(v) \tag{3.7}
\end{gather*}
$$

where $m(w)$ and $m(v)$ are defined in exactly the same way as the major index of a permutation.
4. The interpretation of $C(n ; x, y)$. It is now possible to show that

$$
\begin{equation*}
C(n ; x, y)=\sum_{b \in B G(n)} x^{M(b)} y^{I(b)} \tag{4.1}
\end{equation*}
$$

First, as Carlitz [2] demonstrated, identities (1.1)-(1.3) imply

$$
\begin{equation*}
C(n ; x, y)=\sum_{k \geqslant 0}\binom{n}{k}_{x}\binom{n}{k}_{y} A(k ; x, y) B(n-k ; x, y), \tag{4.2}
\end{equation*}
$$

where the x-binomial coefficient is defined by

$$
\begin{equation*}
\binom{n}{k}_{x}=\frac{(x)_{n}}{(x)_{k}(x)_{n-k}} . \tag{4.3}
\end{equation*}
$$

Second, the fact that (see [1, p.40])

$$
\begin{equation*}
\sum x^{m(w)}=\binom{n}{k}_{x}, \tag{4.4}
\end{equation*}
$$

where the summation is over $w \in W(n)$ with $|w|=k$, along with (2.4), (2.5), (3.6) and (3.7) allow the calculation

$$
\begin{align*}
& \sum_{b \in B G(n)} x^{M(b)} y^{I(b)}=\sum_{(w, v, \theta, \alpha)} x^{m(\theta)+m(\alpha)+m(w)} y^{i(\theta)+c(\alpha)+m(v)} \tag{4.5}\\
&=\sum_{k \geqslant 0} \sum_{|w|=k} x^{m(w)} \sum_{|v|=k} y^{m(v)} \sum_{\theta \in G(k)} x^{m(\theta)} y^{i(\theta)} \sum_{\alpha \in G(n-k)} x^{m(\alpha)} y^{c(\alpha)} \\
&=\sum_{k \geqslant 0}\binom{n}{k}_{x}\binom{n}{k}_{y} A(k ; x, y) B(n-k ; x, y)
\end{align*}
$$

Identities (4.2) and (4.5) imply (4.1).

References

1. G. E. Andrews, The theory of partitions, Addison-Wesley, Reading, Mass., 1976.
2. L. Carlitz, The expansion of certain products, Proc. Amer. Math. Soc. 7 (1956), 558-564.
3. A. M. Garsia and I. Gessel, Permutation statistics and partitions, Adv. in Math. 31 (1979), 288-305.
4. D. Foata, Aspects combinatoires du calcul des q-séries (Séminaire d'Informatique Théorique, 1980), Institut de Programmation, Centre National Recherche Scientifique No. 248, Paris, 1980.
5. D. Rawlings, Generalized Worpitzky identities with applications to permutation enumeration, European J. Combin. 2 (1981), 67-78.
6. D. P. Roselle, Coefficients associated with the expansion of certain products, Proc. Amer. Math. Soc. 45 (1974), 144-150.

Department of Mathematics, California Polytechnic State University, San Luis Obispo, California 93407

[^0]: Received by the editors September 30, 1982.
 1980 Mathematics Subject Classification. Primary 05A15.

