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EXTREME POINTS IN FUNCTION SPACES

DIRK WERNER

Abstract. We show that the extreme points of the unit ball of C(K, L[(fi)) (K

compact Hausdorff, (Í2, 2, /x) arbitrary) are precisely the functions with extremal

values. The result is applied to characterize the extreme points of the unit ball of

certain spaces of compact operators.

1. Introduction and notation. The object of this paper is to characterize the extreme

points of the unit ball of certain spaces of vector-valued continuous functions. A

natural conjecture about such extremal functions is that all the values they assume

are extremal points of the unit ball of the range space. This conjecture is obviously

true for strictly convex and C(.K)-type range spaces, but it is false in general (for

counterexamples see [1 or 3]). Our main theorem will establish the above mentioned

characterization for spaces of L\p)-valued functions. We shall apply this result to

operator spaces, thereby deducing a theorem due to Morris and Phelps on extremal

operators.

Our notation is standard. K and L denote compact Haussdorff spaces, X and Y

Banach spaces. The extreme points of the unit ball of X are called extremal in X.

C(K, X) stands for the Banach space of X-valued continuous functions on K,

equipped with the norm ||/|| = sup^g^H/JI, the value of / G C(K, X) at k G K

being denoted by fk instead of f(k). %(X, Y) is the space of compact operators from

X into Y with the usual operator norm. Finally, we write \A for the characteristic

function of a set A and r for the constant function with value r. The field of scalars

may be real or complex.

2. Extreme points in C(K, Ll(p)). We are going to prove the following theorem.

2.1. Theorem. Suppose (S2, 2, p) is an arbitrary measure space, and f is extremal in

C(K, V(p)). Then fk is extremal in Ll(p) for all k G K.

Proof. First note that \\fk\\ = 1 for all k G K. Assume fk fails to be extremal for

some k0 G K. Applying a selection theorem of Michael's (cf. [4]), we shall represent/

as a nontrivial convex combination of norm-one functions. This contradiction

furnishs the proof of 2.1.,
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Of course, we need a custom-made description of the extreme points of the

unit ball of L\p). Recall uGLx(p) is extremal if and only if u = r\A/p(A) (r a

scalar with modulus 1, A G 2 an atom with p(A) < oo). Equivalently, u G Ll(p)

with \\u\\ = 1 is not extremal if and only if there exists h G L°°(/x), 0 < A < 2,

/ « • | u | dp = 1 with h ■ u ¥= u. (This description is easy to prove.)

Thus, one is led to consider the set-valued function S: K -» 9(L'x'(fi)),

S(k) := [h/h G L°°(p),0 < « < 2, f h -\u\dp= 1}. Now our assumption simply

means: there exists «0 G S(k0) such that «0 • fk #/t . We are going to prove that S

admits a norm-continuous selection s (i.e. a continuous function s: K -» L°°(p) with

sk G S(k) for all k G K), which assumes the prescribed value sk — h0. This is

accomplished in Lemma 2.2.

Continuing the proof of 2.1, with the aid of 2.2, we define gk '■= sk ■ fk, g'k '■= (2

— sk) ■ fk(k G K). Holder's inequality yields gk, g'k G Ü(p), and sk G S(k) gives

II^Arll = ll&tll — l> Ior all k G K. Finally, the continuity of/, 5 and of multiplication

L°°(/x) X L'(p) -* L\p) shows that g and g' are continuous functions. Therefore

/= |(g + g') is a convex combination of norm-one functions in C(K, l)(p)). But

this is a non trivial convex combination since fk ¥= h0 ■ fk = gk , and / is not

extremal.

We still have to prove

2.2. Lemma. S admits a continuous selection s with s(k0) = «0.

Proof. In view of [4, Examples 1.3 and 1.3*, Theorem 3.2"] we have to show

(i) S(k) is nonvoid, convex and norm-closed for all k G K,

(ii) S is lower semicontinuous, meaning for open U G L°°(p), {k/k G K, S(k) C\

U ¥= 0 } is open.

(i) is obvious, and for the proof of (ii) we show F^ : = {k/k G K, S(k) (~) U = 0}

is closed for open U G Lx(p). Yet (k¡) be a net in Fv, such that k¿ -» k* G K.

Claim, k* G Fv. Otherwise, there would be «* G S(k*) D U.

Choose e > 0 (w.l.o.g. e < i) with {H/H G L*(p),\\H - «*|| < e} C U. k, - A:*

and the continuity of /yield fk — fk., therefore |/* |-»|/*.| and d,■.:= J h* ■ \fk\dp

->/«*• \fk. \dp = 1. In particular, there exists z'n such that |a", — 11< e/3 for all

/ > z0. For the following discussion, fix /' > z'0, and construct an element of S(k¡) n U

in contrast to k¡ G Fv. We must consider the cases (a) d, > 1, and (b) d, < 1,

separately (note d, G R).

Case (a). It is easy to see that «, := d,"1 • «* G S(k¡). Our choice of e yields

«, G t/because of H«, - h*\\ =\df - 11 • ||«*|| < (d, - l)/d, • 2 < e.
Case (h). Consider E '■ = [w/w G Ü, h*(w) =£ 3/2}, a measurable subset of ß. Of

course, E depends on the realization of the equivalence class «*, but this is not

substantial for our purpose. Define A: [0, §] -» R by A(r) : — /(«* + r\E) • \fk \ dp.

A is a continuous affine function with A(0) = d¡ < 1, and A(\) > \f\fk \dp — \.

Therefore, there exists r0 G [0, §] with A(r0) = 1. Calculate r0:

r0 A(ro)-A(0) 1 - d,- e/3      = 2

3/2       A(3/2) - A(0) " A(3/2) - d,       3/2 - 1  "" 3£'

consequently r0 < e(< \).
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We now put hi '■— h* A r0lE. A(r0) = 1 and the above inequality guarantee

h j G S(k¡) n U. This completes the demonstration of our claim and thus of Lemma

2.2.

An immediate corollary of Theorem 2.1 is

2.3. Corollary. Suppose (Í2, 2, p) is a purely nonatomic measure space. Then the

unit ball of C(K, V(p)) does not possess any extreme point.

Next we apply Theorem 2.1 to Banach spaces of compact operators. It is well

known that the space of continuous (resp. compact) linear operators from X into

C(K) is isometrically isomorphic to the space of weak*- (resp. norm-)continuous

functions from K into X* via the isometry Fi-» (k i-> T*(8k)) (8k: Dirac measure at

k ), cf. [2, p. 490]. Morris and Phelps [5] call a continuous linear operator T: X -» Y

"nice", if the adjoint T* maps extreme functionals onto extreme functionals. If, in

the case Y = C(K), we regard T as an X*-valued function t on K, T is nice if and

only if t assumes only extremal values. Of course, every nice operator is extremal.

Employing measure theoretic arguments, several authors investigate the problem: Is

every extreme operator from C(L) into C(K) nice? (For examples, see [1,5 or 6].)

Theorem 2.1 enables us to generalize a result of Morris and Phelps.

2.4. Theorem. // X is a Lindenstrauss space, then every extreme point of the unit

ball of %( X, C( K )) is a nice operator.

Proof. Regarding an extreme operator T G %(X, C(K)) as an extremal norm-

continuous function t: K -» X* s V(p), Theorem 2.1 shows that t assumes only

extremal values, which means T is nice.

As C(L) is a Lindenstrauss space, we have proved

2.5. Corollary (Morris and Phelps). Every extreme point of the unit ball of

%(C(L), C(K)) is a nice operator.

References

1. R. M. Blumenthal, J. Lindenstrauss and R. R. Phelps, Extreme operators into C(K), Pacific J. Math.

15 (1965), 747-756.

2. N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7,

Interscience, New York, 1958.

3. P. Greim, An extremal vector-valued Lp-function taking no extremal vectors as values, Proc. Amer.

Math. Soc. 84(1982), 65-68.
4. E. Michael, Continuous selections. I, Ann. of Math. (2) 63 (1956), 361-382.

5. P. D. Morris and R. R. Phelps, Theorems of Krein-Milman type for certain convex sets of operators,

Trans. Amer. Math. Soc. 150(1970), 183-200.
6. M. Sharir, Characterization and properties of extreme operators into C(Y), Israel J. Math. 12 (1972),

174-183.

Regensburger Strasse 25, D-1000 Berlin 30, Federal Republic of Germany


