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A NOTE ON A PROBLEM OF ROBINSON

KENT PEARCE

Abstract. Let > be the usual class of univalent analytic functions on \z\< 1

normalized by /(0) = 0 and /'(0) = 1. Let £ be the linear operator on S given by

£/= [(zf)' and let r$,, be the minimum radius of starlikeness of £/ for/in S. In

1947 R. M. Robinson initiated the study of properties of £ acting on S when he

showed that r^,, > .38. Later, in 1975, R. W. Barnard gave an example which showed

/•s, < .445. It is shown here, using a distortion theorem and Jenkin's region of

variability for zf\z)/f(z), f in 5\ that /■«,,> .435. Also, a simple example, a

close-to-convex half-line mapping, is given which again shows /->, < .445.

Introduction. Let °D denote the open unit disk (z 11 z |< 1} and let 6? be the class of

analytic functions on °D. Let ? be the subclass of 6f of univalent functions /

normalized by/(0) = 0 and/'(0) = 1. Let Sz, % and G denote the usual subclasses of

S of starlike, convex and close-to-convex functions, respectively. For 0 *£ a < 1, let

$t(a) he the subclass of ?z of starlike functions of order a. Finally, let ÇR, denote the

subclass of S of functions / satisfying Re/'(z)>0, z G 6D. For any compact

subclass *X of tf (possibly a singleton) let r%(%) [r$r(%), etc.] denote the minimum

radius of univalence [starlikeness, etc.] over/in %.

Let £ be the linear operator on (3 given by £/ = {(zf)'. The study of the extent to

which £ preserves univalence, starlikeness, etc. for various subclasses of S has been a

recurrent theme in the literature. R. M. Robinson [12, p. 18] initiated the study in

1947 in a paper where he showed that /";;,[£(§)] > .38. That implied, of course,

^[EíS)] > -38. He conjectured then that rs[£(S)] = j. (For the Koebe function k it

is easily seen that z"s[£/c] = z"s,[£/<] = {■) Little or no progress was made directly on

the study of £ following Robinson's work until 1966 when A. E. Livingston [10]

proposed a shift for the setting of the problem from the full class S. He showed that

for each of the subclasses Si, % and Q, a form of Robinson's \ conjecture does hold,

i.e.,

rs,[£(Sr)] = r%[t\K)] = re[£(ß)] = 1/2.

(Since iteSiC 6, it also followed that rs[£(Sf)] = ^[£(6)] = {-.) Livingston's

work renewed interest in the study of £. A series of papers [11,9,3 and 2] appeared

in which the values of rS((/3)[£(Sz(a))] were determined for various ranges of the

parameters a and ß. In [1 and 7] the values of /§,[£(%)] were found for several

subclasses % of Sf given by coefficient restrictions. Also, in [1,7,9 and 2] related
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results were given for various subclasses of DC and 91. A number of techniques were

used to approach these problems; however, with the introduction of convolution

theory, a single approach was developed which could solve most of these problems

[6].
For the class §, however, no improvements on Robinson's original work were

made until 1975 when R. W. Barnard [4] gave an example which showed rs,[£(§)] <

.445. A consequence of Barnard's example was that separate techniques would be

needed to determine /-<;,[£(§)] and /•<;[£(§)] if Robinson's ^ conjecture for /=,[£(§)]

held. In 1978, applying the Grunsky inequalities to the univalence problem, Barnard

[5] showed .49 </-<;[£(§)].

The best known estimates for rs,[£(§)] have been the lower bound .38 from

Robinson's original work and the upper bound .445 from Barnard's example. In this

paper we will show, using an elementary distortion theorem and Jenkin's region of

variability for zf'(z)/f(z), f in S, that rs,[£(§)] > .435. We will also give a simple

example (a function/in 6) which again shows that r%l[£(§)] < .445.

Lower bound. It is well known that a function g, analytic in \z\< r, is starlike

(w.r.t. 0) in |z |< r if and only if Re zg'(z)/g(z) > 0 for |z |< r. If g = £(/), then

zg'(z) =   2 A zf"(z)/f'(z)

g(z)        \Af(z)/(zf'(z))'

Hence, to show that z-s,[£(§)] > r0 it is (necessary and) sufficient to show that, for/

in S,

2 + z/"(z)//'(z)

l+/(z)/(z/'(z))

Let/ G S and r =|z \. It is well known that

zf"{z)

>0,

2r2

which can be rewritten as

zf"(z)

4r

1 ~r2

4r

1 -r2(1) 2+/w    ,
If we divide both sides of (1) by 1 + f(z)/(zf'(z)), we obtain

(2)

2 + z/"( z)/f'(z) 2 zf'(z)/f(z) 4r zf\z)/f(z)

l+z/'(z)//(z)

4r W

I A f(z)/(zf'(z))       \-r2 \ A zf'(z)/f(z)

Let IF denote zf'(z)/f(z). Then (2) implies

(3) 2 + z/"(z)//'(z) 2_W__

{i) KC   1 Af(z)/zf'(z)       KC 1 - r2 1 + W      \-r2

J. A. Jenkins [8, p.   110] has shown that the region of variability for  W

zf'(z)/f(z),f in S, is exactly the set given by

(4) |log^|<log((l+r)/(l-r)).

1 + W
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Let Ar denote the set given by (4), 8r the boundary of Ar, and 8/ = {W G 8r | Im W

s* 0}. If we let gr(rV) denote the right-hand side of (3), then, since gr is super-

harmonic (in W) on Ar, gr assumes its minimum over Ar on 8r. Further, by a

symmetry argument, we can conclude that gr attains its minimum over Ar on 8/ .

Let rQ he defined by

W
(5) rn = max { r I min Re -——— — 2z-

s+ 1 + W

W
>0

1 + w\

It follows then that rs,[£(S)] s* r0. We determine r0 as follows: Line 5 implies

(6) ReK-2r0|K|>0,

where V = W/(\ A W), W G 5+. Let V = x A iy. Then (6) implies x » 0 and

0 < y < x/A, where A — y 4/-02/ ( 1 — 4r02 ). Since the map W -» F is a bilinear map

with pole at -1, W must be on or outside the circle \W — C| = |C|, where

C = - j A {-Ai. Hence, if we write W — pe'e and use the geometry imposed on W,

we obtain, upon simplification,

(7) p + cos O- A sin0»O.

Let d(p,6) denote the left-hand side of (7). Now, W is constrained to be on 8/ .

We note for W on 8/ and for p 5= 1 that 6 decreases with increasing p and d(p,6)

increases with p. Thus, to find the minimum of d(p, 6), we may constrain W to be

on 8/ with p < 1. For p < 1, the arc 8/ is monotonie; therefore, p may be written in

terms of 6 as p = p(6) = exp(- \JB2 - 62), where B = log((l + rQ)/(\ - /■„)) and

0 =s 6 =£ B.

Let d(p,6) achieve its minimum on 8/o at 60. Then by (5) we have

(8) p0 + cos 60 — A sin 60 = 0

where p0 = p(60). Further, since at 60 we have a minimum of d(p, 6), we also have

(9) p'q — sin 60 — A cos 60 = 0,

where

(10) p'0 = Po60/^B2 - 62.

Multiplying (8) and (9) by sin 60 and cos 60 (and vice versa) and then adding and

subtracting the resulting equations yields

p0 sin 60 A p'0 cos 60 — A — 0,

and

p0cos 60 — p'0 sin 60 A 1 = 0,

which combine to give

(11) Po(sin 60 A A cos 60 ) + pó(cos 6Q — A sin 60) = 0.

Substituting (10) into (11) and rearranging yields

/    x tan60A A 0O
(12)

¿tan*0-l       ^2 _ ei
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Let A = tan u. Then, rewriting (12), squaring and simplifying we have

1 + tan2(0o + a) = B2/(B2 - 0O2),

which can be reduced to

(13) 60 = Bsin(60A a).

Equation (13) defines 60 implicitly in terms of r0. Then r0 is found as the first positive

root of (8).

In order to find r0 we will show that d(p0, 60) has only one zero on 0 < r0 < .44.

Then we may apply Newton's method to obtain .435659 < r{) < .435660. (For

convenience, we will drop the subscript on r0.) The critical step in the argument is to

show that 6 is an increasing function of r on 0 < r < .44. Differentiating (13)

implicitly we have

_ B'sin(6 A u) A Bcos(6 A u)u' __ N(r)

1 - Bcos(6A u) ' D(r)'

We see that D(r) > 1 - B > 1 - £(.44) > 0 on 0 < r < A4. We will show that if

N(r) = 0, then f > .44. That will imply 6' > 0 on 0 < r < .44 and, hence, 6 is

increasing on 0 < r < .44.

Suppose N(r) = 0. That implies tan(0 A u) = -Bo)'/B', which implies, since

tan w = A,

,ia\ a      Bu'AAB' Nx(r)
<14> ^e=^^A-B^---^fy

If 0 < r < .44, then 0 *£ tan 6 < tan £(.44) < 1.39, since 0 *£ 6 < B. It is easily seen

that Nx(r) is increasing and positive on 0 < r < .44 and Dt(r) is decreasing on

0 < r < .44 and changes sign once, say at r*. Then, for 0 < r < r^, -N¡(r)/Dx(r) <

0, whereas tanf? > 0. For rit<r< .44, we have (d/dr)(-Nx(r)/Dx(r)) < 0, which

implies -Nx(r)/Dx(r) > -NX(M)/DX(.44) > 1.75, whereas tanf? < 1.39. Therefore,

f > .44.

To show that d(p,6) has the required properties, write

d(p, 6) — p A cos6 — A sinf?

= exp(-5|cos(0 + w)|) + ]¡\ - 4r2 cos(6 A 03).

Clearly, 6 A u is an increasing function on 0 < r < .44. Let r, satisfy 6(r¡) A <o(r,)

= m/2. Then, for 0 < r < r„ d(p, 6) > y/l - 4r2 cos(6 A u) > 0, and for r, < r <

.44, d(p, 6) is decreasing.

Remark. The author has not been able to determine whether the lower bound of

r0 given here for rSr[£(S)] is sharp. To show sharpness it is necessary (and sufficient)

to show that if/0 is the Jenkin's function (for which z/'0//0(z) lies on 8/o ) which

minimizes the right-hand side of (3) at | z |= r0, then

1   2 + z/0"(z)//q-(z)_2 z/q-(z)//0(z)

1 + /0(z)/ (z/0'(z))        1 - r2 1 + zf¿(z)/f0(z)
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Example. Letfx v,\x\ = \y\= 1, be given by

fx,v(z) = (z-{(xAy)z2)/(\-yz)2.

It is well known that f    G G and, for x ¥= y, f maps ty to the complement of a

half-line. Let g = t(fxv). Then

/ \

_1_
1_1_1

\ — yz        \ — xz A \ — yz

It is easily verified that if arg x — 343° and arg y = 100°, then Re zg'(z)/g(z) < 0

for z = r s* .4447.
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