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ON THE REIDEMEISTER MOVES

OF A CLASSICAL KNOT

BRUCE TRACE

Abstract. We show that under certain reasonable criteria one of the Reidemeister

moves can be elminated.

It is a well-known fact in classical knot theory that the following three moves,

known as the Reidemeister moves, generate all the possible projections of a knot. To

be more precise, given two oriented knots, A", and K2, in R3, where K¡ is in general

position with respect to the natural projection m: R3 -» R2, having the property that

there is an isotopy carrying A', to K2 and preserving the orientations of the knots,

then there is a sequence of the Reidemeister moves taking A^, to K2 and preserving

the orientations of the knots. Note that the last two Reidemeister moves preserve

two properties of the knots projection.
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Figure 1. The Reidemeister moves

The first is the winding number, the second is the framing associated to the knot's

projection. Upon defining these concepts we will show that given two projections of

an oriented knot having the same winding numbers and associated framings then

only the last two Reidemeister moves are required in passing from either of the

projections to the other.
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Suppose /: S ' -» R3 is a smooth embedding. Assume that / is in general position

with respect to m, i.e., the singular set of/consists of a finite number of transverse

double points and it ° f: Sx -> R2 is an immersion. We endow S1 with its usual

counterclockwise orientation. Let X denote a nonzero vector field on Sx inducing

this orientation. Then since ir ° f is an immersion, (it ° /)%X ¥= 0, so we obtain a

map, Sx -» S], the degree of which is called the winding number of /. This induced

map is usually called the Gauss map. To define the framing associated to / we

position ourselves high on the z-axis. From this vantage point the "double points" of

f(Sx) fall naturally into two types, 4* and 4~- We assign a -1 to 4* and a + 1 to *+-.

The sum of these ± l's is the framing associated to f.

We are now in a position to prove the

Theorem. Suppose f, g: Sx -+ R3 are general position embeddings representing the

same oriented knot such that the winding number of f equals the winding number of g

and the associated framing of f equals the associated framing of g. Then we can pass

from f(Sx) to g(S]) via the second and third Reidemeister moves.

Proof. We begin by viewing /(S1) in R3 X {0} and g(Sx) in R3 X {1}. Since

f(Sx) and g(Sx) represent the same oriented knot we can pass from/(S') to g(Sx)

via the Reidemeister moves preserving the knot's orientation. Beginning at f(Sx) we

build an isotopy in R3 X / as follows: whenever a Reidemeister move of the second

or third type is required we perform the operation. For changes involving the first

Reidemeister move there are two basic cases: whenever the introduction of a kink is

required we do so—but we also introduce a kink at each previous level in the

isotopy already constructed including the (R3 X 0)-level, if we must eliminate a kink

we proceed as in Figure 2.

J?.

kink to be eliminated introduce kink and run
introduced kink back down
the isotopy

S>

perform an isotopy perform an isotopy

Figure 2. Eliminating kinks

Proceeding in this fashion, we end up with an isotopy joining f(Sx) + (kinks) to

g(Sx) where this isotopy involves only the second and third Reidemeister moves.

We can assume that all the kinks added to f(Sx) lie on a subarc of/(51) having no

double points i.e. we have a picture looking like fiJL^rx . The previous picture

contains the four possible types of Kinks which can occur. Kinks lying above the
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subarc will change the winding number of / by either +1 or -1 depending on

orientation, those below would change the winding number of / by -1 or +1,

respectively, depending on orientation. (The important relationship is +1 above

then -1 below, or -1 above then +1 below.) The framing associated to each kink

then provides the four possibilities. Now let a+ denote the number of +1 framed

kinks lying above the subarc, a_ denote the number of -1 framed kinks lying above

the subarc and b+ ,b_ denote the corresponding numbers for kinks below the

subarc.

Since the winding number of / equals the winding number g, and type 2 and 3

Reidemeister moves do not alter the winding number we must have a+ +a_= b +

+ b_. An analogous statement applied to associated framing yields a+ +b+ = a^ + b_.

One easily verifies that for these equations to hold simultaneously we must have

a+ — b_ and a_= b+ . These are precisely the equations required to apply the

argument used for eliminating kinks (a+ +a_)-times yielding/(S]) + (kinks) can be

altered to f(Sl) via the Reidemeister moves of the second and third types. This

completes the proof of the Theorem.

We complete this paper with some remarks. Note that every oriented knot has a

projection with winding number = 0 and framing = 1. (In general, (winding num-

ber) + (framing) = (odd number).) The quickest approach to observing this remark

is to take a braid presentation for the knot and introduce kinks to arrive at the

desired winding number and framing. The usefulness of winding number = 0 and

framing = 1 projections is that they are invariant under change of the knots

orientation. (In general, changing orientation multiplies winding number by -1 and

leaves framing fixed.) These observations yield

Corollary 1. Let Kx and K2 denote two knots with winding number = 0 and

framing = 1. Then Kx is isotopic to K2 (as unoriented knots) if and only if we can pass

from Kx to K2 using only the second and third Reidemeister moves.

Lastly, we note that the Theorem is a strenthened version of the Whitney-Grau-

stein Theorem, i.e.

Corollary 2 (Whitney-Graustein Theorem). Regular homotopy classes of

immersions Sx -> R2 are in one-to-one correspondence with Z, the bijection being

induced by the Gauss map.

The key to observing this is that every immersion S] -» R2 may be viewed as the

projection of the unknot into R2 and the unknot with standard orientation is isotopic

to the unknot with opposite orientation.
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