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TWO HELLY TYPE THEOREMS

KRZYSZTOF KOLODZIEJCZYK

Abstract. Two Helly type theorems for convex sets containing A-dimensional

half-flats are established, one of them being an extension of Katchalski's theorem [3]

where the case k = 1 was considered.

1. Introduction. For any set C in linear space let conv C denote the convex hull of

C, aff C the affine hull of C, and dim C the dimension of aff C. By a /c-flat

(A:-half-flat) we mean a translate of a subspace (half-space) of dimension k.

In this note we prove the following two Helly type theorems.

Theorem 1. If ÍF is a finite family of convex sets in R" such that the intersection of

any 2« — 2 k + 2 members of IF contains a k-half-flat, then H^F contains a k-half-flat.

Theorem 2. If$ is a finite family of convex sets in a linear space such that:

(l)max{dimC|CG^} = d,

(2) dim Uf =«,
(3) card <$>r(n,d, k),

where

'2d-2k+ 2    if\<k^d,n = d,

r(n, d, k) - - 2d - 2k + 1     if\*zk<d,n>d,

2 ifk = d,n>d,

then H ? contains a k-half-flat provided the intersection of any r(n, d, k) members of$

contains a k-half-flat.

The case k = 1 in Theorem 1 was proved by Katchalski [3]. Our proof of Theorem

1 employs Katchalski's result and the following theorem of de Santis [2].

If'S is a finite family of convex sets in R" such that the intersection of any n — k + 1

members of § contains a k-flat, then C\ ÍF contains a k-flat.

Theorem 2 is analogous to the results by Netrebin [4, Theorems 1 and 2].

Related Helly type theorems can be found in [1].

2. Proof of Theorem 1. The validity of the theorem for k = 1 follows by

Katchalski's result.

Let 1 < k »£ «. Since 2« — 2k + 2 > n — (k — 1) + 1, by our assumption and

the theorem of de Santis there exists a (k — l)-flat H such that
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Now let H* be an (« — k + l)-flat which is complementary to H and let

î* = {c* = cnH*|cef}

be a family of convex sets in H*. Choose any subfamily &{, ̂  C ÇF, consisting of

2« — 2 k + 2 elements. By assumption there exists a /c-half-flat E such that EC D S7,.

It is clear that E n H* contains a 1-half-flat (ray). This shows that any subfamily

?*, iff C ÍF*, consisting of 2« — 2k + 2 elements, contains a ray in its intersection,

and we can apply Katchalski's theorem to the family ?F* in H*. This way we infer

that there exists a ray A which is contained in all members of ?F* and consequently in

all members of 5F. Without loss of generality we can suppose that an apex of À

belongs to H. Now obviously the set conv(H U A) is a fc-half-flat and is contained in

D ÇF. This completes the proof.

3. Proof of Theorem 2. In the case of 1 < k < d, « = d, Theorem 2 coincides with

Theorem 1. The other two cases we prove by induction on card W. Let s = card f

and r = /•(«, d, k). The theorem is obviously true for s — r. Suppose the result holds

for s — s0 > r and take s = s0 + 1. Putting

Bm= H {C,\i*m}t       m=\,2,...,s0+\,

it can be shown, similarly as in the proof of Theorem 2 in [4], that in both cases

considered

dim U {Bm\m= l,2,...,s0+ 1} = d.

Now let

B = aff( U {Bm\m = 1,2,...,*„ + 1}).

Case 1. 1 «s k < d, « > d. Since « > d there is a set, say C,, contained in $ such

that dim(C, nB)^J- 1. Consider the family f = {C = P D C\ C S f} of con-

vex sets in P = aff(C, fl B). Choose any subfamily %[, ÍF,' C §', containing 2d — 2k

sets. The following inclusions are obvious:

nfi=nf,nPDSfflonPD Bmo

for some m0, 2 < m0 < s0 + 1. Our induction assumption implies that the set Bma

contains a fc-half-flat. Hence, by the above inclusions, any subfamily ?F,' consisting of

2d — 2k sets contains a /:-half-flat in its intersection. This shows that the family W

satisfies the conditions of Theorem 1 in the (d — l)-flat P and hence there is a

/c-half-flat which is contained in D §' and consequently in D ^.

Case 2. k = d, n > d. Consider the family <5" = {C" = BnC|Cef). Choose

any two sets of family ?F" (e.g. C" and C2). Then we have

C," n C{ = B n (c, n c2) d b n b„o d Bma

for some m0, 3<w0<i0+ 1. This shows, by our induction hypothesis, that the

family ?" satisfies the conditions of Theorem 1 in the d-ñat B. Now applying

Theorem 1 we complete the proof of Theorem 2.

Remark. A simple modification of the example given in the last part of the proof

of Theorem 2 in [4] shows that the number r(n,d, k) cannot be replaced by a

smaller number.
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