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A GENERAL ISEPIPHANIC INEQUALITY

ERWIN LUTWAK

Abstract. An inequality of Petty regarding the volume of a convex body

and that of the polar of its projection body is shown to lead to an inequality

between the volume of a convex body and the power means of its bright-

ne8s function. A special case of this power-mean inequality is the classical

isepiphanic (isoperimetric) inequality. The power-mean inequality can also be

used to obtain strengthened forms and extensions of some known and conjec-

tured geometric inequalities. Affine projection measures (Quermassintegrale)

are introduced.

In [12] it was shown that the Blaschke-Santaló inequality [23] leads immediately

to a power-mean inequality relating the volume of a convex body and the power

means of its width (function). Special cases of this power-mean inequality include

the classical inequalities of Urysohn and Bieberbach.

It will be shown in the present note that an inequality of Petty [19], which we

will refer to as the Petty projection inequality, leads immediately to an analogous

power-mean inequality relating the volume of a convex body and the power means of

its brightness (function). A special case of this power-mean inequality is the classical

isepiphanic (isoperimetric) inequality. This power-mean inequality also leads to

inequalities similar to some width-volume inequalities obtained by Chakerian [6, 7],

Chakerian and Sangwine-Yager [8], and the author [15]. When combined with ot; r

known inequalities, this power-mean inequality can be used to obtain a strengthened

form of an inequality of Knothe [11] and Chakerian [5] relating the volume of a

convex body and the arithmetic mean of the volumes of its circumscribed right

cylinders. Finally, it solves completely a problem posed in [14], and can be used to

prove two (similar) conjectures of the author [16, 26].

The setting for this note is Euclidean n-dimensional space, Rn (n > 2). We

will use the letter K (possibly with subscripts) to denote a convex body (compact

convex set with nonempty interior) in Rn. We use Sn_1 to denote the surface and

wn to denote the n-dimensional volume of the unit ball in Rn. The letter u will

denote a unit vector, exclusively. For a given direction u G Sn~1, we use Eu to

denote the hyperplane (passing through the origin) orthogonal to u. For a given

K and u € Sn_1, we use ¿>k(w) and ctk{u) to denote respectively the width and

brightness of K in the direction u; i.e., ok^u) is the (n — l)-dimensional volume

of the projection of K onto Eu, while bf((u) is the 1-dimensional volume of the

projection of K onto the orthogonal complement of Eu. For the volume, surface

area, and mean width of K, we write V(K), S(K), and B(K), respectively. The

reader is referred to [3 and 9] for material relating to convex bodies.
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For a positive continuous function / defined on Sn 1 and a real number p # 0,

the p-mean of /, Mp\f], is defined by

M>M¿i->/p(u)HVP'
where dS(u) is the surface area element on 5n_1 at u. For p = -co, 0, or oo, Mp[/]

is defined by

Mp[f] = lim Ms[f}.
s—*p

It is well known [10, p. 143] that Mp[f] is continuous in p, and that

Mx[f]=max{f{u)\ueSn-1},

while,

Af_co[/] = min{/(u) | u € S""1}.

If p < q, then we have Jensen's inequality [10, p. 144],

(1) Mp[f)<Mq\f],
with equality if and only if f is constant.

For a convex body K in Rn and a point * in the interior of K, let K* denote

the polar reciprocal body of K with respect to the unit sphere centered at *. The

Blaschke-Santaló inequality is

(2) \nîV{K)V{K*)<wl,

with equality if and only if K is an ellipsoid,

where the Inf is taken over all points * in the interior of K. The inequality is due

to Blaschke [1] for n < 3 and to Santaló [23] for n > 2 (see also the comments in

Schneider [25, p. 552]). From these works also follow the conditions for equality

when K is assumed to be sufficiently smooth. The conditions for equality for

arbitrary convex bodies were recently obtained by Petty [21]. (See also Saint

Raymond [22] for the case where K is assumed centrally symmetric.)

In [12] it was shown that a direct consequence of (2) is

Theorem 1.  For p > —n and for all convex bodies K in Rn

[V{K)lunYln<Mp[bKl2],

with equality if and only if K is a ball.

Ifp = —n, the inequality remains valid; however, equality can occur if and only ifK

is an ellipsoid. For p < —n, the inequality does not hold {for all K).

As noted in [12], since Moo[í>k/2] is one-half the diameter of K, the case p = oo

in Theorem 1 is the Bieberbach inequality [9, p. 173], and since Mi [6^/2] is equal

to B(K)/2, the case p = 1 is the Urysohn inequality [3, p. 76].

Clearly, from (1), it follows that for p < q we have

(3) Mp[bK/2}<Mq[bK/2],

with equality if and only ifK is of constant width.

From (3), we see that, in Theorem 1, larger values of p result in 'weaker' inequalities.

As will be shown presently, the Petty projection inequality leads immediately to

a result analogous to Theorem 1:
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Theorem 2.  For p> —n and for all convex bodies K in Rn

\V{K)lujn\{n-1)ln < Afp[ffK:/w„-i],

with equality if and only if K is a ball.

For p = —n, the inequality remains valid; however, equality can occur if and only if

K is an ellipsoid. For p < —n, the inequality does not hold (for all K).

Since the Cauchy surface area formula [9, p. 208] is

S(K) = ncjnMi [o7<-/wn-i],

the case p = 1 in Theorem 2 is the classical isepiphanic (isoperimetric) inequality

nwJ/nV(Ä')(n~1)/n < S{K),

with equality if and only if K is a ball.

From (1), it follows immediately that for p < q we have

, , Mp[aK/un-i] < Mq[aK/^n-l],

with equality if and only if K is of constant brightness.

From (4), we see that, in Theorem 2, larger values of p result in 'weaker' inequalities.

We note that inequality (4) for the case p = —n, q = 1 can be found in Petty [19,

p. 40].
We now prove Theorem 2. For a given convex body K, the projection body of

K, UK is defined [3, p. 45] (see also Bolker [2] and Schneider-Weil [26]) as the

convex body whose supporting hyperplane in a given direction u has a distance

ok(u) from the origin; i.e., the support function of UK is o~k- The Petty projection

inequality [19, p. 40] is

ImOJKMKr-1 < (Wn/Wn-i)»,

with equality if and only if K is an ellipsoid,

where Im(UK) denotes the minimum of the volumes of the polar reciprocal bodies

of UK. Since UK is centrally symmetric, it follows (see, for example, [13, 19, 20,

23]) that

Im(UK) = V(U°K),

where U°K denotes the polar reciprocal of UK with respect to (the unit sphere

centered at) the origin. Since the boundary of U°K can be represented in polar

form by r = <7k(^)_1, the volume of U°K is given by

V{U°K) = ±jsnio-Kn{u)dS{u).

It follows that the Petty projection inequality is the case p = —n in Theorem 2.

The cases where p > —n, now, follow from the case p = —n if we use (4). To see

that the inequality (in Theorem 2) does not hold for p < —n, take K to be any

nonspherical ellipsoid, and use the case p = —n in conjunction with (4).

We note that Theorem 2 completely solves the problem posed in [14]. We also

note that for n = 2 (the plane case) both theorems coincide.

As will be seen shortly, the case p = — 1 in Theorem 2 is of particular interest.



418 ERWIN LUTWAK

The projection measures (Quermassintegrale) Wo, W\,..., Wn in R" can be defined

(see [9, p. 234]) by letting W0{K) = V(K), Wn{K) = wn, and, for 0 < * < n, letting

^Wn-i(K) - ^=i fVi(K | E%)d%,

where all such integrals are to be taken over the entire space of freely rotating

z-dimensional flats Ei through the origin, K \ Ei denotes the projection of K onto

Ei, Vi denotes ¿-dimensional volume and dE{ is the rotation density, normalized so

that

/
¿2       UnCin

Un-i

where

71 \wn-vwn-i
Cin — i

The harmonic projection measures (harmonische Quermassintegrale) Wo, W\,...,

Wn in R" are defined by Hadwiger [9, p. 267] by letting W0{K) = V{K), Wn{K) =
u)n, and, for 0 < i < n, letting

r -1_1

^^- / Vi{K | El)~1dËl
WnCin  J<¿n

It follows (see [9, p. 267]) that

Wi(K) < W%{K),

with equality for 0 < i < n if and only if the (n — ¿)-dimensional projections of K

have constant (n — ¿)-dimensional volume.

Obviously, we have

Wn-i(K) = wnM1[bK/2}   and   Wn_1(ii) = wnM_1[6^/2])

while

Wx{K) = WnMxlffK/wn-i]   and   Wi{K) = wnM-i[aK/un-i].

The case p = 1 in Theorem 1 is the Urysohn inequality,

U%-lV{K) < Wn-i{K)n,

with equality if and only if K is a ball,

while the case p = — 1 in Theorem 1 is the stronger harmonic Urysohn inequality

(see [12, 16]),

ujl-lV{K)<Wn.i{K)n,

with equality if and only if K is a ball.

Similarly, the case p = 1 in Theorem 2 is the isepiphanic inequality,

UnViKf-1 < Wr{K)n,

with equality if and only if K is a ball,

while the case p = — 1 in Theorem 2 is the stronger harmonic isepiphanic inequality,

unV(K)n-1 < H¿(JOB.

with equality if and only if K is a ball.
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This last inequality is conjectured in [16, p. 147].

In light of the critical role played by the case p = —n in both theorems, one

is led to define affine projection measures $o, $i, • • • >$n in Rn by taking $o(.A) =

V(A), $„(A) = ujn, and, for 0 < i < n, letting

,-l/n

^*n-i(K) =
Un

^=L(vi{K\Ei)-ndËl
uncm J

Obviously, we have

*i(K) < Wt(K) < Wi(K),
with equality for 0 < i < n if and only if the (n — ¿)-dimensional projections of K

have constant (n — z)-dimensional volume.

As noted by Hadwiger [9, p. 267], the harmonic projection measure W¿ (viewed as

a functional on the space of convex bodies in Rn, endowed with the topology induced

by the HausdorfT metric [9, p. 151]) is positive, continuous, bounded, monotone

(increasing), homogeneous of degree n—i, and invariant under motions (translations

and rotations). It is easy to verify that the affine projection measure $i has exactly

the same properties.

Hadwiger [9, p. 268] proves that for the Minkowski (vector) sum K\ + K2 one

has
Wl{K1 +K2)1/in-l) > WiiKtfK"-* + Wt{K2)ll{n-i);

i.e., Wi is concave. Similarly, following in the same manner as Hadwiger, one

has
$i(Ki + K2)ll{n-i] > $î(iY1)1/("-î) + <í>l{K2)1/{n-l).

In terms of affine projection measures, the case p = —n in Theorem 1 may be

viewed as the affine Bieberbach inequality,

wrM*0<*«-i(*:)n,
with equality if and only if K is an ellipsoid,

while the case p = —n in Theorem 2 (the Petty projection inequality) may be viewed

as the affine isepiphanic inequality,

UnViK)"-1 < *!&)",

with equality if and only if K is an ellipsoid.

For a given convex body K in R™ and a direction u € Sn~l let Ik{u,x) denote

the length of the cord of K that is orthogonal to Eu and (when extended) passes

through the point x£ Eu. Let Ik[u) denote the mean length of chords of K that

are in the direction u; i.e.,

Ik(u) = —p-r /       lK(u,x)dVn-i{x),
o-k(u)Jk\eu

where dVn-i{x) is the (n — l)-dimensional volume element on Eu at x. Clearly,

(5) lK(u) = V(K)oK(u)-1.

The following 'dual' of the Urysohn inequality was conjectured by the author at

the 1978 Oberwolfach 'Konvexe Körper' conference (see [27, p. 265]):

^=^(     IfítóiiAM^t"-1'/"^)1/",
nwn ./s«-1

with equality if and only if K is a ball.
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This is an immediate consequence of the harmonic isepiphanic inequality (case p =

—1 in Theorem 2) if we use (5).

The inequality in Theorem 2 with p = —n (the Petty projection inequality) can

be used to obtain brightness-volume inequalities analogous to some width-volume

inequalities obtained by Chakerian [6, 7], Chakerian and Sangwine-Yager [8], and

Lutwak [15].

For convex bodies K\,...,Kn in R", and for a real number p / 0, we can define

Sp(Ku...,Kn) by:

Sp(K1,...,Kn) = \—[      lcTKl(u)---oKn(u)}PdS(u)\     .

Following as in [15], we can use the Petty projection inequality and the Holder

inequality [10, p. 140] to obtain

(6) K-iK"-1)^!)'^^!-1»/" < s^{Ku...,Kn),

with equality if and only if the Ki are homothetic ellipsoids.

The inequality (6) is a strengthened form of

(wJUl/wrWtfl)- • -mn)]("-1)/n < SxHJKu .. .,Kn),

with equality if and only if all Ki are balls.

In connection with the last two inequalities, we note that a centrally symmetric

body K always has volume greater than that of any other convex body whose

brightness function is the same as that of K (see [18 and 24]).

If we combine (5) and (6) we obtain an inequality in the spirit of the concurrent

cross-section inequality of Busemann [4] (also see [17]):

^fsnJKl(uy-4Kn(u)dS(u)<(^/^_1)[V(K1y--V(Kn)}1/n,

with equality if and only if the Ki are homothetic ellipsoids.

For a convex body K and a direction u € S"-1, let Vk{u) denote the volume

of the right cylinder circumscribed about K whose generators are orthogonal to u.

Clearly Vk{u) = 6k(u)ctk'(w). By using the inequalities of Theorems 1 and 2 in

conjunction with the Holder inequality we obtain

^±V{K) <\—f     VkÍu)-1 dS(u)

with equality if and only if K is a ball.

This is a strengthened form of the inequality

2-^=lV{K) <—(      VK(u)dS(u),
Wn nwnJs»->

with equality if and only if K is a ball,

which was obtained by Knothe [11] for n = 3 and proved by Chakerian [5] for n > 3.

The author would like to thank Professors R. Schneider and K. Leichtweiss for

several informative observations regarding the Blaschke-Santaló inequality.   The

author would also like to thank the referee for reference [22].
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