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RECOVERY OF //''-FUNCTIONS

V. TOTIK

Abstract. Let there be given finitely many points {ak}'¡ from the unit disc. If/is a

H ''-function then how well can the value of / at z = 0 be approximated by linear

means ~2!{ckf(ak)l We give the optimal constants ck and get, as a corollary, the

possibility of the approximation of / by operators of the form 2"f(ak)pk with

polynomialspk. The order of approximation depends on the distance 2"(1 — \ak\)

of the point system from the unit circle.

Let U = {z 11 z \< 1} be the unit disc, and Hp (1 < p < oo) and A the usual Hardy

space and disc algebra, respectively. In what follows, H will denote either of these

spaces with corresponding norm || • \\H. Let us consider the following problem: if

{ak}f Ç U is a sequence of points, / G H, and we know the values f(ak), then how

can the value of/at another point a be determined, or, more generally, how can we

represent Lf for a fixed, but otherwise arbitrary, linear functional L E H* via the

values {/(a¿)}f? We shall consider a somewhat more general situation, namely

when we are given a point system {<*„*}"= 1,1«*«« and we know at the «th step only

the values [f(ccnk)}nk=\ and we want to recapture the value of /at a fixed point a

(the amount of information does not increase). In this note we give explicit formulas

that solve this recovery problem.

Let us agree that every point a, ak, etc. will belong to U. Our main result is the

following

Theorem. Let a¡,...,anben distinct points from U. Set

D l

1    —   0   0      .
'      J   I   l,J= 1

and let Dk be the matrix obtained by exchanging every entry in the kth column of D by

\.Ifck = det Dk/del D then for every f E Hx we have

(1) f(0)-lckf(ak) tf'IlKI-

Of course, this implies that, for all of our spaces H and f E H,

f(0)-2ckf(ak)
1

//III «A h
1
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and the Blaschke product

V. TOTIK

A(*) = n
at

1 -akz

shows that this is the best possible result; namely, for any constants dk we have

h(0)-2dkh(ak)
i

l*llwlll«*l
i

Our results has several consequences. First of all for the values of /at an arbitrary

point a we can deduce, by an application of (1) to

z + a

that with

and

(2)

the inequality

v   '        V 1 + az I k      1 — aak

(1 - aäj)(l -ôa,-)  Y
D(a)

,(1-I«|2)(l -«,«;)/,,;=

cA(a) = det(D(a))t/detZ)(o),

(3) /(«)-2^(«)/(«J
1 t l"l TT at — a

1 — aaL (/£#')

holds. This implies that if {ank} is a point system such that ank ¥= anj if k ¥*j and

2¡J=](1 — | a„k |) tends to infinity as « -» oo, then to every a E U there are constants

c„k such that for every/ G //',

(4) lim     2   <W/(«»*) = /(«)•
n-oo A:=1

More generally, we have

Corollary 1. If ank =t= anjfor k =£j and 1"k= ,(1 - | ank |) -» oo as « -» oo, i«e« to

euery LE//* r«ere are constants {cnA}"=l ,st4„ si/c« /«a/

(5) lim   2 cnkf(ank) = Lf
«-oc fc=1

«oWi /or euery f E H.

Thus, the value of / at any fixed point can be determined by the above formulas.

However, we can say much more. Let

«(/,«)„=   sup  ||/( «•)-/( « e'-*)||„
0«A«S

be the F-modulus of continuity of /. We have
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Corollary 2. Let {ank} (ank ¥^ <xnj for k ¥^j) be a point system and let sn =

2£ = ,(1 — | ank |). For each « there are polynomials pnk of degree at most s„ such that for

every f E H,

(6) /-    2  f(«nk)Pn>
k = \

Kh{>
-í„/16 „+«(/,*-•/'•)„).

Thus, if sn -* oo, í«e« i«e operators

(7) 4,/(*) =    2   f{ank)PnkU)
k=\

approximate every f E H in H-norm.

This corollary is in sharp contrast with a result of G. Somorjai [3] asserting that

there are no operators An of the form (7) with | ank |= 1 such that \\Anf — /||sup -» 0

as « -» oo for every / E A. We can see that if we move the nodes ank into U the

situation changes radically.

We emphasize that both the constants cnk in (4) and (5) and the polynomials pnk in

(6) can be effectively constructed (see the proofs below).

Finally, we mention that our results can be extended to the case when the nodes

may coincide. Naturally, we have to then use the values of the higher derivatives of/

as well. Let us consider, e.g., (1).

Corollary 3. Let a,,...,am be m distinct points and «,,...,nm nonnegative

integers. Then there are constants {</*/}*= l,o«/««* sucn znai

m      nk

/(0) -  1   1 dkjfU\ak)
k=\j=0

//•nKr+1      (/e//1)-

Here

dkj = det DHi+...+Hk_l+k+J/det D       (1 < k < m, 0 <j< nk),

where D is the square matrix of size «, + ■ ■ ■ +nm + m with

(z'/(l -«tz)'+l)WU-

at   the   («, + • nk-\ + k + r,   «, +n,_] + j + s)  position   (1 < k,

m, 0 nk,0 nj).

It would be interesting to know if the assumption "2"(1 _ | a„k |) -^ oo as « -» oo"

is necessary in Corollaries 1 and 2. Clearly, if anA: = ak (« > /c) then

Um 2(1 -I«„*l) = 2(1 -l«*l) = «
n-oo    , ,

should be satisfied if we want to conclude convergence (at least for H — Hp,

1 < p < oo ). In the general case we know only the trivial necessary condition

2"(1 ~ I ank I) > c > ° (if tnis is not satisfied then there is an/ E //',/^ 0 such that

f(ank) = 0(1 *£/c<«)for infinitely many n).
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f(ak) = ±-[2*f(e»)pk(t)dt
LIT Jn

Proof. Let ek = eik' a.ndpk(t) = (1 - ake~")~\ Clearly,

1   p-f.

'o

for every / E //'. First we compute

<i = distsap(Span({/?*}", {eX);l).

By the Hahn-Banach theorem (see also [2, p. 71])

d = sup | LI | .
L(.ek) = Upk)=0,\\L\\<\

¿EC2«,

Every L E C2*„ is given by a complex Borel-measure ¡x:

Lg= f2"g(t)dp(t),     ||L|| = ih   (gec2J.
•'o

Since for the L's in the supremum we have L(ek) = 0 for k = 1,2,... by the F. and

M. Riesz theorem [1, p. 47] this yields that /x is absolutely continuous with respect to

the Lebesgue-measure. It follows that for some/ E //' we have

Lg = ̂ -rg(t)f(e")dt       (gEC2J,
¿IT Jç,

\\L\\ = [2"d\p\= j- (2"\f{e")\ dt = U/H,,,
•'0 27T ̂ 0

SO

d = sup |/(0) I .
/eff". u/U ffi«l,/(a»)=0

Jensen's inequality [1, p. 51]

log 1/(0) |<¿ flog 1/(^)1*       (/GH1)

applied to the function

A*)II
z — a

,  \ 1 - atz

-i

gives

log|/(0)|<2log|«,|+¿f2,Tlog|/(e")l^

so

rf< sup ni«*l   exp(¿ /"277log|/(e")|*
/£//', ||/||„,«l./(ai) = 0\   1 / \ Z,7-/0

<   «up   (ni«*i ii/ii//' = ñi«*i•
/Œ//'.||/||„.«l   \    1 / 1
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Now let us consider L2„ with the inner product (/, g) = (2tt) '/02,7/(Og(0 dt. If

d* = distLaj(Span({^};{^}f);l)

then clearly d* < d. The function

«*(o = n
-ake'

is orthogonal to Span ({pk}'{, {ek}f) and has norm 1, so d* >!(«*, 1)|= II" I«*; I > i-e-

we haved = d* = ïl"\ak\.

By what we have proven above to every e > 0 there are a trigonometric poly-

nomial Q* E Span({eA}f ) and numbers cj,... ,ccn such that

and this implies

d^

(<*<)

i - 2 4 Pk - Q*
k=\

i - 2 4 pk
k = \

d+ e

<d +

But then the conjugate of 1"c[pk + Qe converges as e -> 0 to the orthogonal

projection of 1 onto Span({pk}", {ek}™) and, hence, taking also into account that

(Ft./>7) = (1 -a^)-1, we get

I"   2   4{l - WjY1 = M -   2^^-Ô7^)-0        (e-0).
k = \ \ k=\ I

This implies at once that every cek converges to a ck as e -* 0 and these ck satisfy

« _    ,

2 c*(l~ <**«/)    = 1»       7=1,2,...,«,
k=]

from which q. = det Dk/det D. Note that det D J= 0 since Z) is the Gramm matrix

of the linearly independent set {pk}".

Now let q = 1 — 1"ckpk. If e > 0 then there is a polynomial Qf E Span^e^f )

such that |g(f) + 0/01^ ^ + e for all / (see the consideration above). Hence for

every / E H ' we have

M-2ckf{ak)
l

\(f°euq)\=\(foeuq+Qt)\

i/'ll? + ÔJIsup < ll/ll//<(¿ + O = Il/Il//' [ n l«*l +*

letting e tend to zero we obtain ( 1 ). The proof is complete.

To prove Corollary 2 let a,,... ,an be « distinct points and 5 = 2"(1 — | «^ |). For

any integer r 3= 0 set

ckr = —:/ ck(a)ct~r~l da

'       T'-Vl=i/2
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where ck(a) is the constant defined in (2). It is easy to see that

l(«*-«)(l -««*)"'

whenever | a |*£ 1/2; hence, by (3),

1 + la

(1-1«* I)

/(«)-2q(«)/K)
i

h'II(1-(1-|«*I)/4)

^4||/||„1exp(-5/4)

for every \a\— 1/2. Dividing both sides by -niar+ ' and integrating on |a\— 1/2, we

obtain

(4)

Let

7T/(r)(0)-  2ckJ(ak)
k=]

||/||//.2'+3exp(-j/4).

^if)^,/!3air+f2(1       r)^
mW     '       ^n     r! ■"    \        2ml     r!

r = 0 r — m

be the de la Vallée Poussin means of the Taylor expansion of / and let us consider

the corresponding polynomials

m — 1 Im      . ,

/>*(*)=    2C„Z'+    S2(1-¿|V' (1 <*<!!).
r = 0 r = m

By (4)

°m(/) -2/( «*)/>/

2 m

„ 2 2r+3exp(-i/4)
// r = 0

<22"+4||/IIh«p(-í/4).

Putting m - [s/16], and taking into account that by the well-known properties of

the de la Vallée Poussin kernels and Jackson's approximation theorem [4, pp. 524,

260-263]

K(f)-ñH^KHtí(f,^)H,

we obtain

f-lfMp* <KH{e-^16\\f\\H + U(f,e-^6)H),
h

which proves Corollary 2.

Corollary 1 is an immediate consequence of Corollary 2, since for cnk = Lpnk we

have

Lf~  2 cHkf(ak)
k = \

KH\\L\\(e-"i6\\f\\H + U(f,e-'/]6)H).
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Corollary 3 could be deduced from the Theorem by a limiting argument, but it is

easier to modify the proof of the latter so as to directly verify Corollary 3. Indeed, if

pkJ = e-V'(\ - ake-"TJ~\ then (/° eltp¿J)=fW(ak) (/G //') and exactly as

in the proof of our Theorem we get

distsup  1 -  2   2 ckjPkj;Spm{{ek}?)) = f[ \ak\"^\
\ k=\/=0 /        A=l

and the proof can be completed as above. We omit the details.
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