A TWO WEIGHT INEQUALITY

FOR THE FRACTIONAL INTEGRAL WHEN $p=n / \alpha$

ELEONOR HARBOURE, ROBERTO A. MACIAS AND CARLOS SEGOVIA

AbSTRACT. Let I_{α} be the fractional integral operator defined as

$$
I_{\alpha} f(x)=\int f(y)|x-y|^{\alpha-n} d y
$$

Given a weight w (resp. v), necessary and sufficient conditions are given for the existence of a nontrivial weight v (resp. w) such that

$$
\left\|v \chi_{B}\right\|_{\infty} \frac{1}{|B|} \int_{B}\left|I_{\alpha} f(x)-m_{B}\left(I_{\alpha} f\right)\right| d x \leqslant C\left(\int|f|^{n / \alpha} w\right)^{\alpha / n}
$$

holds for any ball B such that $\left\|v \chi_{B}\right\|_{\infty}>0$.

1. Introduction. We consider the fractional integral operator $I_{\alpha}, 0<\alpha<n$, defined by

$$
\begin{equation*}
I_{\alpha} f(x)=\int_{\mathbf{R}^{n}} f(y)|x-y|^{\alpha-n} d y \tag{1.1}
\end{equation*}
$$

Necessary and sufficient conditions were obtained in [1] in order that given a weight v (resp. w) there exists a nontrivial weight w (resp. v) satisfying

$$
\left(\int_{\mathbf{R}^{n}}\left|I_{\alpha} f(x)\right|^{q} v(x) d x\right)^{1 / q} \leqslant\left(\int_{\mathbf{R}^{n}}|f(x)|^{p} w(x) d x\right)^{1 / p}
$$

for $1<p, q<\infty, 1 / q \geqslant 1 / p-\alpha / n$. For the case $p=1, q=n /(n-\alpha)$ weights satisfying a weak type inequality were characterized. Our purpose now is to study the limiting case $p=n / \alpha, q=\infty$.

It is not difficult to verify that, except for trivial cases, I_{α} is not a bounded operator from $L^{n / \alpha}(w d x)$ into $L^{\infty}(v d x)$. To see this we assume the set $\{x$: $v(x)>0\} \cap\{x: w(x)<\infty\}$ has positive Lebesgue measure. Then if B_{1} is the unit ball we may assume that for some N the set $G=\{x: v(x)>0\} \cap\{x: w(x)<N\} \cap B_{1}$ has positive measure and zero as a point of density. Take $f(y)=\chi_{G}(y)|y|^{-\beta}$, with $\beta<\alpha$. Then

$$
\int|f|^{n / \alpha} w d y \leqslant N \int_{B_{1}}|y|^{-\beta n / \alpha} d y \leqslant \frac{N \omega_{n} \alpha}{n(\alpha-\beta)} .
$$

On the other hand, since $I_{\alpha} f(x)$ is continuous at zero, we have

$$
\left\|I_{\alpha} f\right\|_{L^{\infty}(v)} \geqslant I_{\alpha} f(0)=\int_{G}|y|^{-\beta}|y|^{\alpha-n} d y \geqslant \int_{G \cap B_{r}}|y|^{\alpha-\beta-n} d y,
$$

[^0]where r is such that $\left|B_{s} \cap G\right| /\left|B_{s}\right| \geqslant 3 / 4$, for every $s \leqslant r$. We write
$$
A_{k}=\left\{y: r 4^{-(k+1) / n} \leqslant|y|<r 4^{-k / n}\right\}
$$
and
$$
C_{k}=\left\{y: 2^{-1 / n} r 4^{-k / n} \leqslant|y|<r 4^{-k / n}\right\} .
$$

Then C_{k} is contained in A_{k} and

$$
\left|G \cap A_{k}\right| \geqslant 2 \omega_{n} r^{n} 4^{-(k+1)}=\left|C_{k}\right| .
$$

Taking into account that $|y|^{\alpha-\beta-n}$ is a decreasing function, we have

$$
\begin{aligned}
\int_{G \cap B_{r}}|y|^{\alpha-\beta-n} d y & =\sum_{k=0}^{\infty} \int_{G \cap A_{k}}|y|^{\alpha-\beta-n} d y \geqslant \sum_{k=0}^{\infty} \int_{C_{k}}|y|^{\alpha-\beta-n} d y \\
& =\omega_{n} \cdot \frac{r^{\alpha-\beta}}{\alpha-\beta} \cdot \frac{1}{\left(1+2^{(\beta-\alpha) / n}\right)} .
\end{aligned}
$$

Therefore, if $\left\|I_{\alpha} f\right\|_{L^{\infty}(v)} \leqslant C\|f\|_{L^{n / \alpha}(w)}$ were true, we would have

$$
r^{\alpha-\beta} \leqslant C\left(2^{(\beta-\alpha) / n}+1\right)(\alpha-\beta)^{1-\alpha / n}
$$

for any $\beta<\alpha$. Letting β go to α, we arrive at a contradiction.
Moreover, as is well known, the function $f(x)=\left(|x|^{\alpha} \log |x|\right)^{-1} \chi_{(2, \infty)}(|x|)$ belongs to $L^{n / \alpha}(d x)$, yet the integral (1.1) defining $I_{\alpha} f(x)$ is divergent for every x.

However, if f belongs to $L^{n / \alpha}(d x)$ and has compact support, $I_{\alpha} f(x)$ is finite for almost every x. Furthermore, given any ball $B=B(z, r)$ the expression

$$
I_{\alpha}^{B} f(x)=\int_{B} f(y)|x-y|^{\alpha-n} d y+\int_{C B} f(y)\left[|x-y|^{\alpha-n}-|y-z|^{\alpha-n}\right] d y
$$

is well defined for every f in $L^{n / \alpha}(d x)$ and coincides almost everywhere (a.e.) with $I_{\alpha} f$ up to a finite constant $C_{B}=\int_{C B} f(y)|y-z|^{\alpha-n} d y$, if in addition, f has compact support.

These observations lead us to study, as in [2], the weights satisfying the substitute inequality

$$
\begin{equation*}
\left\|v \chi_{B}\right\|_{\infty} \frac{1}{|B|} \int_{B}\left|I_{\alpha} f(x)-m_{B}\left(I_{\alpha} f\right)\right| d x \leqslant\left(\int|f|^{n / \alpha} w d x\right)^{\alpha / n}, \tag{1.2}
\end{equation*}
$$

for any ball B such that $\left\|v \chi_{B}\right\|_{\infty}>0$ and f with compact support. We are using the notation $|E|$ to indicate the Lebesgue measure of the set E and $m_{E}(g)$ the average of g over E, i.e. $m_{E}(g)=(1 /|E|) \int_{E} g(y) d y$.
2. The results. We begin by studying those weights w for which (1.2) holds for some nontrivial weight v. We first prove the following

Lemma 1. Let v and g be measurable functions satisfying

$$
\begin{equation*}
\left\|v \chi_{S}\right\|_{\infty} \frac{1}{|S|} \int_{S}\left|g-m_{S}(g)\right| \leqslant C \tag{2.1}
\end{equation*}
$$

for any ball S such that $\left\|v \chi_{S}\right\|_{\infty}>0$. Then if B and B^{*} are two balls such that
$|B|=\left|B^{*}\right|$ and $\left\|v \chi_{B}\right\|_{\infty}>0$, we have

$$
\left\|v \chi_{B}\right\|_{\infty} \frac{1}{|B|} \int_{B}\left|g-m_{B^{*}}(g)\right| \leqslant 3 C \frac{|\tilde{B}|}{|B|}
$$

where \tilde{B} is any ball containing $B \cup B^{*}$.
Proof.

$$
\begin{aligned}
& \left\|v \chi_{B}\right\|_{\infty} \frac{1}{|B|} \int_{B}\left|g-m_{B^{*}}(g)\right| \\
& \quad \leqslant\left\|v \chi_{B}\right\|_{\infty}\left[\frac{1}{|B|} \int_{B}\left|g-m_{B}(g)\right|+\left|m_{B}(g)-m_{\tilde{B}}(g)\right|+\left|m_{B^{*}}(g)-m_{\tilde{B}}(g)\right|\right] \\
& \quad \leqslant C+\left\|v \chi_{\tilde{B}}\right\|_{\infty}\left[\frac{1}{|B|} \int_{B}\left|g-m_{\tilde{B}}(g)\right|+\frac{1}{\left|B^{*}\right|} \int_{B^{*}}\left|g-m_{\tilde{B}}(g)\right|\right] \\
& \quad \leqslant C+2 \frac{|\tilde{B}|}{|B|} \frac{1}{|\tilde{B}|} \int_{\tilde{B}}\left|g-m_{\tilde{B}}(g)\right| \leqslant 3 \frac{|\tilde{B}|}{|B|} C .
\end{aligned}
$$

From this lemma we can easily obtain a necessary condition on the weight w for (1.2) to hold.

Theorem 1. Let w be a nonnegative function, finite on a set of positive measure and such that there exists a nonnegative function v, not identically zero, satisfying (1.2) for any bounded function with compact support. Then, for any R large enough, we have

$$
\begin{equation*}
\int_{|x| \leqslant R} w(x)^{-\alpha /(n-\alpha)} d x \leqslant C R^{n} . \tag{2.2}
\end{equation*}
$$

Proof. Let $w_{\varepsilon}(x)=w(x)+\varepsilon$ and define $f_{R}=w_{\varepsilon}^{-\alpha /(n-\alpha)} \chi_{B_{R}}$ for R large enough so that $\left\|v \chi_{B_{R}}\right\|_{\infty}>0$. Then f_{R} is a bounded function with compact support and

$$
\int\left|f_{R}\right|^{n / \alpha} w=\int_{B_{R}} w_{\varepsilon}^{-n /(n-\alpha)} w \leqslant \int_{B_{R}} w_{\varepsilon}^{-\alpha /(n-\alpha)}<\infty .
$$

Let us take $B_{R}^{*}=B(z, R)$, the ball centered at z of radius R, with $|z|=5 R$. Clearly B_{R} and B_{R}^{*} are contained in $\tilde{B}_{R}=B(0,6 R)$ and $K=\left|\tilde{B}_{R}\right| /\left|B_{R}\right|$ is independent of R. Also, substituting f_{R} for f in (1.2) we obtain that $g_{R}=I_{\alpha}\left(f_{R}\right)$ satisfies (2.1) with a constant $C_{R}=\left(\int_{B_{R}} w_{\varepsilon}^{-\alpha \not(n-\alpha)}\right)^{\alpha / n}$. Hence, we can apply Lemma 1 to conclude

$$
\left\|v \chi_{B_{R}}\right\|_{\infty} \frac{1}{\left|B_{R}\right|} \int_{B_{R}}\left|g_{R}-m_{B_{R}^{*}}\left(g_{R}\right)\right| \leqslant 3 K\left(\int_{B_{R}} w_{\varepsilon}^{-\alpha /(n-\alpha)}\right)^{\alpha / n} .
$$

Now for $x \in B_{R}$ we have

$$
\begin{aligned}
g_{R}(x)-m_{B_{R}^{*}}\left(g_{R}\right) & =\frac{1}{\left|B_{R}^{*}\right|} \int_{B_{R}^{*}} \int_{B_{R}} f_{R}(y)\left[|x-y|^{\alpha-n}-|t-y|^{\alpha-n}\right] d y d t \\
& \geqslant \frac{1}{\left|B_{R}^{*}\right|} \int_{B_{R}^{*}} \int_{B_{R}} f_{R}(y)\left[(2 R)^{\alpha-n}-(3 R)^{\alpha-n}\right] d y d t \\
& \geqslant C R^{\alpha-n} \int_{B_{R}} w_{\varepsilon}^{-\alpha /(n-\alpha)} d y
\end{aligned}
$$

with $C>0$ and independent of R. Therefore, since we can always assume $\left\|v \chi_{B_{R}}\right\|_{\infty}$ $\geqslant 1$ for R large enough, we obtain

$$
R^{\alpha-n} \int_{B_{R}} w_{\varepsilon}^{-\alpha /(n-\alpha)} \leqslant C\left(\int_{B_{R}} w_{\varepsilon}^{-\alpha /(n-\alpha)}\right)^{\alpha / n},
$$

which implies, for R large enough,

$$
\int_{B_{R}} w_{\varepsilon}^{-\alpha /(n-\alpha)} \leqslant C R^{n} .
$$

Now letting ε go to zero we obtain the desired conclusion.
We now want to study the behavior of the fractional integral operator acting on functions of $L^{n / \alpha}(w d x)$ for a weight w satisfying (2.2). As in the case of Lebesgue measure, we can show that if $w^{-\alpha / n-\alpha)}$ is merely locally integrable, the integral defining $I_{\alpha} f$ is finite almost everywhere for any $f \in L^{n / \alpha}(w d x)$ having compact support. In fact, if $B=B(0, R)$ is a ball containing the support of f and $f \geqslant 0$, we have

$$
\begin{aligned}
\int_{B} \int f(y) \mid x & -\left.y\right|^{\alpha-n} d y d x \\
& =\int f(y) \int_{B}|x-y|^{\alpha-n} d x d y \leqslant \int f(y) \int_{B(y, 2 R)}|x-y|^{\alpha-n} d x d y \\
& \leqslant C R^{\alpha}\left(\int f^{n / \alpha} w\right)^{\alpha / n}\left(\int_{B} w^{-\alpha /(n-\alpha)}\right)^{1-\alpha / n}<\infty .
\end{aligned}
$$

Therefore $I_{\alpha} f$ is finite a.e.
The next theorem shows that condition (2.2) on w allows us to construct a weight v satisfying (1.2).

Theorem 2. Let w be a nonnegative function, finite on a set of positive measure, satisfying (2.2) for $R \geqslant 1$. Then there exists a nonnegative function v, not identically zero, such that (1.2) holds for any ball B satisfying $\left\|v \chi_{B}\right\|_{\infty}>0$, and for any function f with compact support.

Proof. Let the maximal function be denoted by

$$
M^{*} g(x)=\sup \left\{\frac{1}{|B(z, r)|} \int_{B(z, r)}|g(y)| d y: x \in B(z, r), 0<r \leqslant 2\right\} .
$$

Since $w^{-\alpha /(n-\alpha)}$ is a locally integrable function, $M^{*}\left(w^{-\alpha /(n-\alpha)}\right)$ is finite a.e. We may assume that for N large enough the set $E=B(0,1) \cap\left\{x: M^{*}\left(w^{-\alpha /(n-\alpha)}\right)(x)<N\right\}$ has positive measure. We claim that the weight $v=\chi_{E}$ satisfies (1.2).

Let f be a function in $L^{n / \alpha}(w d x)$ with compact support. In order to prove (1.2) we need only consider balls B such that $B \cap E \neq \varnothing$. If $B=B(z, R)$ is one of those balls, denoting by \tilde{B} the ball $B(z, 4 R)$, we write

$$
I_{\alpha} f(x)=I_{\alpha}^{1} f(x)+I_{\alpha}^{2} f(x)=\int_{\tilde{B}} f(y)|x-y|^{\alpha-n} d y+\int_{C \tilde{B}} f(y)|x-y|^{\alpha-n} d y .
$$

For $I_{\alpha}^{1} f$ we have

$$
\begin{aligned}
\frac{1}{|B|} \int_{B}\left|I_{\alpha}^{1}(f)(x)-m_{B}\left(I_{\alpha}^{1} f\right)\right| d x & \leqslant \frac{2}{|B|} \int_{B} \int_{\tilde{B}}|f(y)||x-y|^{\alpha-n} d y d x \\
& \leqslant \frac{2}{|B|} \int_{\tilde{B}}|f(y)| \int_{B(y, 5 R)}|x-y|^{\alpha-n} d x d y \\
& \leqslant C R^{\alpha-n}\left(\int|f|^{n / \alpha} w\right)^{\alpha / n}\left(\int_{\tilde{B}} w^{-\alpha / n-\alpha)}\right)^{1-\alpha / n}
\end{aligned}
$$

If $4 R \geqslant 1$, since $E \cap B \neq \varnothing$, it follows that $\tilde{B} \subset B(0,9 R)$ and, therefore, by hypothesis

$$
\int_{\tilde{B}} w^{-\alpha /(n-\alpha)} \leqslant C R^{n} .
$$

On the other hand, if $4 R \leqslant 1$ and $t \in E \cap B$, we get

$$
\int_{\tilde{B}} w^{-\alpha /(n-\alpha)} \leqslant C R^{n} M^{*}\left(w^{-\alpha /(n-\alpha)}\right)(t) \leqslant C N R^{n}
$$

So, in any case, we obtain

$$
\begin{equation*}
\frac{1}{|B|} \int_{B}\left|I_{\alpha}^{1} f(x)-m_{B}\left(I_{\alpha}^{1} f\right)\right| d x \leqslant C\left(\int|f|^{n / \alpha} w\right)^{\alpha / n} \tag{2.3}
\end{equation*}
$$

We now estimate $I_{\alpha}^{2} f$:

$$
\left.\int_{B}\left|I_{\alpha}^{2} f(x)-m_{B}\left(I_{\alpha}^{2} f\right)\right| d x \leqslant \frac{1}{|B|} \int_{B} \int_{B} \int_{C B}|f(y)|| | x-\left.y\right|^{\alpha-n}-|t-y|^{\alpha-n} \right\rvert\, d y d t d x
$$

But, using the mean value theorem and the fact that $\|x-y|-| t-y\|<2 R$ for x and t in B and y in $C \tilde{B}$, it follows that

$$
\left||x-y|^{\alpha-n}-|t-y|^{\alpha-n}\right| \leqslant C R|z-y|^{\alpha-n-1} .
$$

Therefore

$$
\begin{align*}
& \frac{1}{|B|} \int_{B}\left|I_{\alpha}^{2} f(x)-m_{B}\left(I_{\alpha}^{2} f\right)\right| d x \leqslant C R \int_{C \dot{B}}|f(y)||z-y|^{\alpha-n-1} d y \\
& \quad \leqslant C R\left(\int|f|^{n / \alpha} w\right)^{\alpha / n}\left(\int_{C \dot{B}} w(y)^{-\alpha /(n-\alpha)}|z-y|^{-n \beta} d y\right)^{1-\alpha / n} \tag{2.4}
\end{align*}
$$

where $\beta=1+1 /(n-\alpha)>1$. For the last integral we have $I=\int_{|z-y| \geqslant 4 R} w(y)^{-\alpha /(n-\alpha)}|z-y|^{-n \beta} d y \leqslant \sum_{k=0}^{\infty}\left(2^{k} R\right)^{-n \beta} \int_{|z-y| \leqslant 2^{k+1} R} w(y)^{-\alpha /(n-\alpha)} d y$. If $|z| \geqslant 2$, since $B \cap E \neq \varnothing$, we have $R \geqslant|z| / 2 \geqslant 1$ and, hence,

$$
\int_{|z-y| \leqslant 2^{k+1} R} w(y)^{-\alpha /(n-\alpha)} d y \leqslant \int_{|y| \leqslant 2^{k+2} R} w(y)^{-\alpha /(n-\alpha)} d y \leqslant C\left(2^{k} R\right)^{n}
$$

Moreover, if $|z| \leqslant 2$ but k is such that $2^{k} R \geqslant 1$, the last estimate also holds. On the other hand, if $2^{k} R \leqslant 1$ and $t \in E \cap B$, we obtain

$$
\int_{|z-y| \leqslant 2^{k+1} R} w(y)^{-\alpha /(n-\alpha)} d y \leqslant C\left(2^{k} R\right)^{n} M^{*}\left(w^{-\alpha /(n-\alpha)}\right)(t) \leqslant C N\left(2^{k} R\right)^{n} .
$$

Therefore

$$
I \leqslant C R^{-n /(n-\alpha)} \sum_{k=0}^{\infty} 2^{-k n /(n-\alpha)} \leqslant C R^{-n /(n-\alpha)} .
$$

Replacing this estimate in (2.4) gives

$$
\begin{equation*}
\frac{1}{|B|} \int_{B}\left|I_{\alpha}^{2} f(x)-m_{B}\left(I_{\alpha}^{2} f\right)\right| d x \leqslant C\left(\int|f|^{n / \alpha} w\right)^{\alpha / n} \tag{2.5}
\end{equation*}
$$

Taking into account that $\|v\|_{\infty}=1$, the estimates (2.3) and (2.5) prove the claim.
Extension of I_{α} to the whole space $L^{n / \alpha}(w d x)$. Let w be a weight satisfying (2.2). As we have seen, the integral (1.1), defining the fractional integral $I_{\alpha} f$, is absolutely convergent for any function f in $L^{n / \alpha}(w d x)$ with compact support. Let v be a weight satisfying (1.2). The previous theorem shows there always exists such a v. Then I_{α} can be considered as a bounded operator from a dense subspace of $L^{n / \alpha}(w d x)$ into a weighted version of BMO , denoted $\mathrm{BMO}(v)$. The norm on this space is given by

$$
\left\|\|g\|=\sup _{B}\right\| \chi_{B} v \|_{\infty} m_{B}\left(\left|g-m_{B}(g)\right|\right),
$$

where the sup is taken over the balls B such that $\left\|\chi_{B} v\right\|_{\infty}>0$. Therefore I_{α} can be extended as a bounded operator from $L^{n / \alpha}(w d x)$ into $\mathrm{BMO}(v)$.

Furthermore, by arguments similar to those used in the proof of Theorem 2, it is possible to give an explicit expression for $I_{\alpha} f$ as an element in the space $\mathrm{BMO}(v)$, valid for any function f in $L^{n / \alpha}(w d x)$. In order to do this, assume w satisfies (2.2) for $R \geqslant 1$. For any $r>0$ we define

$$
I_{r} f(x)=\int_{|y|<r} f(y)|x-y|^{\alpha-n} d y+\int_{|y| \geqslant r} f(y)\left(|x-y|^{\alpha-n}-|y|^{\alpha-n}\right) d y
$$

Let us show that for any f in $L^{\alpha / n}(w d x)$ this expression is finite a.e. For any R large enough we can write

$$
\begin{aligned}
I_{r} f(x)= & I_{\alpha}\left(f \chi_{B_{R}}\right)(x)+\int_{|y| \geqslant R} f(y)\left(|x-y|^{\alpha-n}-|y|^{\alpha-n}\right) d y \\
& -\int_{r \leqslant|,|<R} f(y)|y|^{\alpha-n} d y
\end{aligned}
$$

By the assumption on f and w, the last integral is a finite constant. Moreover, for any x such that $2|x|<R$, we have

$$
\begin{aligned}
\mid \int_{|y| \geqslant R} f(y)\left(|x-y|^{\alpha-n}\right. & \left.-|y|^{\alpha-n}\right) d y\left|\leqslant C R \int_{|y| \geqslant R}\right| f(y)\left||y|^{\alpha-n-1} d y\right. \\
& \leqslant C\|f\|_{L^{n / \alpha}(w)}\left(\int_{|y| \geqslant R} w(y)^{-\alpha \wedge n-\alpha)}|y|^{-n \beta} d y\right)^{1-\alpha / n}
\end{aligned}
$$

with $\beta=1+1 /(n-\alpha)$. Proceeding as in the proof of Theorem 2 we see that the last integral is finite. This proves our assertion. Moreover, we have also shown that $I_{R} f$ and $I_{r} f$ coincide a.e. up to a finite constant.

From these remarks we can conclude that for any $r>0$ and any f in $L^{n / \alpha}(w d x)$, the function $I_{r} f$ coincides in $\operatorname{BMO}(v)$ with $I_{\alpha}(f)$ defined by density arguments, providing the expression we were looking for.

We now consider the problem of characterizing those weights v for which there exists a nontrivial weight w satisfying (1.2).

Theorem 3. Let v be a nonnegative function different from zero on a set of positive measure. Then there exists a nonnegative function w finite on a set of positive measure and satisfying (1.2) for any bounded function f with compact support if and only if the function v satisfies $|v(x)| \leqslant C(1+|x|)^{n-\alpha}$.

Proof. Assume (1.2) holds for some w. Let $f(x)=\chi_{E}(x)$, where

$$
E=B(0,1) \cap\{x: w(x)<N\},
$$

for N large enough. By using translations if necessary, we can assume $|E|>0$. Let $B=B(0, R)$ with $R \geqslant 1$ and large enough so that $\left\|v \chi_{B}\right\|_{\infty}>0$. Let B^{*} be the ball $B(z, R)$ where z is such that $|z|=5 R$, and let \tilde{B} be the ball centered at zero with radius $6 R$. Therefore, if (1.2) is satisfied, we can apply Lemma 1 to $g=I_{\alpha} f$ and obtain

$$
\left\|v \chi_{B}\right\|_{\infty} \frac{.1}{|B|} \int_{B}\left|I_{\alpha} f(y)-m_{B^{*}}\left(I_{\alpha} f\right)\right| d y \leqslant K
$$

for a constant K independent of R. Proceeding now as in the proof of Theorem 1 we obtain that, for any R large enough, $\left\|v \chi_{B}\right\|_{\infty} \leqslant C R^{n-\alpha}$, which implies

$$
|v(x)| \leqslant C(1+|x|)^{n-\alpha} \quad \text { a.e. }
$$

Conversely, we will show that (1.2) holds for $v(x)=(1+|x|)^{n-\alpha}$ and $w(x)=$ $(1+|x|)^{(n+\varepsilon)(n-\alpha) / \alpha}$. Let $B=B(z, R)$ be any ball and $\tilde{B}=B(z, 4 R)$. As in the proof of Theorem 2 we write

$$
I_{\alpha} f(x)=I_{\alpha}^{1} f(x)+I_{\alpha}^{2} f(x)=\int_{\dot{B}} f(y)|x-y|^{\alpha-n} d y+\int_{C B} f(y)|x-y|^{\alpha-n} d y
$$

for a bounded function f with compact support. We have already seen that for a function of this sort we have the estimate

$$
\frac{1}{|B|} \int_{B}\left|I_{\alpha}^{1} f(x)-m_{B}\left(I_{\alpha}^{1} f\right)\right| d x \leqslant C\left(R^{-n} \int_{\dot{B}} w^{-\alpha /(n-\alpha)}\right)^{1-\alpha / n}\left(\int|f|^{n / \alpha} w\right)^{\alpha / n} .
$$

Consider

$$
A(z, R)=(1+|z|+R)^{n-\alpha}\left(R^{-n} \int_{\bar{B}} w^{-\alpha /(n-\alpha)}\right)^{1-\alpha / n} .
$$

We want to show it is bounded independently of z and R. From our choice of w it follows that

$$
M\left(w^{-\alpha /(n-\alpha)}\right)(x) \leqslant C(1+|x|)^{-n}
$$

where M is the usual Hardy-Littlewood maximal function operator. In particular $R^{-n} \int_{\tilde{B}} w^{-\alpha /(n-\alpha)} \leqslant C$. Thus, we need only consider $|z|+R \geqslant 1$. Now, if $|z| \geqslant R$,

$$
A(z, R) \leqslant C|z|^{n-\alpha}\left[M\left(w^{-\alpha /(n-\alpha)}\right)(z)\right]^{1-\alpha / n} \leqslant C
$$

and if $|z| \leqslant R$,

$$
A(z, R) \leqslant C R^{n-\alpha}\left(R^{-n} \int w^{-\alpha /(n-\alpha)}\right)^{1-\alpha / n} \leqslant C
$$

Therefore

$$
\begin{align*}
\left\|v \chi_{B}\right\|_{\infty} \frac{1}{|B|} \int_{B}\left|I_{\alpha}^{1} f(x)-m_{B}\left(I_{\alpha}^{1} f\right)\right| d x & \leqslant C A(z, R)\left(\int|f|^{n / \alpha} w\right)^{\alpha / n} \tag{2.6}\\
& \leqslant C\left(\int|f|^{n / \alpha} w\right)^{\alpha / n} .
\end{align*}
$$

We also proved (see 2.4) that if $\beta=1+1 /(n-\alpha)$, then

$$
\begin{aligned}
& \frac{1}{|B|} \int_{B}\left|I_{\alpha}^{2} f(x)-m_{B}\left(I_{\alpha}^{2} f\right)\right| d x \\
& \quad \leqslant C R\left(\int|f|^{n / \alpha} w\right)^{\alpha / n}\left(\int_{|z-y| \geqslant 4 R} w(y)^{-\alpha /(n-\alpha)}|z-y|^{-n \beta} d y\right)^{1-\alpha / n}
\end{aligned}
$$

From our choice of w we have the estimates

$$
\begin{aligned}
\int_{|z-y| \geqslant 4 R} w(y)^{-\alpha /(n-\alpha)}|z-y|^{-n \beta} d y & \leqslant C \sum_{k=2}^{\infty}\left(2^{k} R\right)^{-n \beta} \int_{|z-y|<2^{k+1} R} w(y)^{-\alpha /(n-\alpha)} d y \\
& \leqslant C M\left(w^{-\alpha /(n-\alpha)}\right)(z) R^{-n(\beta-1)} \sum_{k=2}^{\infty} 2^{n(1-\beta) k} \\
& \leqslant C R^{-n /(n-\alpha)}(1+|z|)^{-n}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{|z-y| \geqslant 4 R} w(y)^{-\alpha /(n-\alpha)}|z-y|^{-n \beta} d y & \leqslant C R^{-n \beta} \int w(y)^{-\alpha /(n-\alpha)} d y \\
& \leqslant C R^{-n(n-\alpha+1) /(n-\alpha)} .
\end{aligned}
$$

Using these estimates for $|z| \geqslant R$ and $|z| \leqslant R$, respectively, we obtain

$$
\begin{equation*}
\left\|v \chi_{B}\right\|_{\infty} \frac{1}{|B|} \int_{B}\left|I_{\alpha}^{2} f(x)-m_{B}\left(I_{\alpha}^{2} f\right)\right| d x \leqslant C\left(\int|f|^{n / \alpha} w\right)^{\alpha / n} . \tag{2.7}
\end{equation*}
$$

Combining (2.6) and (2.7), (1.2) follows.

References

[^1]
[^0]: Received by the editors September 27, 1982.
 1980 Mathematics Subject Classification. Primary 26D10, 26A33; Secondary 46E30.

[^1]: 1. E. Harboure, R. A. Macias and C. Segovia, Boundedness of fractional operators on L^{p} spaces with different weights, preprint.
 2. B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261-274.

 Programa Especial de Matematica Aplicada, Conicet, Güemes 3450, CC91, 3000 Santa Fe, Argentina (Current address of E. Harboure and R. Macias)

 Facultad de Ciencias Exactas, Fisicas y Naturales, Universidad de Buenos Aires, 1428-Buenos Aires, Argentina (Current address of C. Segovia)

