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MACKEY FUNCTORS AND G-COHOMOLOGY

STEFAN WANER

Abstract. The Bredon-IUman cohomology of universal G-apaces associated

with a family of subgroups is related to derived functors in three fundamental

categories of G-orbits. Analogous results for the G-cohomology of classifying

spaces for G-covering spaces are also obtained.

Introduction. The purpose of this note is to complete the work in [Wl and W2],

and to provide the necessary basic results required for the computations in ordinary

RO(G)-graded equivariant cohomology to appear in [LMMW].

We consider here three categories of G-orbits fundamental to equivariant cohomol-

ogy theory, and the relationship of associated derived functors to the Bredon-IUman

cohomology of universal G-spaces. This results in a generalization of the work in

[Wl and W2], and also in some algebraic information (Corollary 4.3).

Our method for constructing chain complexes was inspired in part by J. P. May,

and readily generalizes to give explicit chain complexes for ordinary RO(G)-graded

cohomology. Details will appear in [LMMW].

The author is grateful to Leonard Scott for many stimulating conversations on

the subject.

1. Three topological categories of G-orbits. First we need some notation. Fix a

compact Lie group G, and an orthogonal G-module U such that:

(i) Each finite-dimensional orthogonal G-module occurs, up to isomorphism,

infinitely often as an invariant subspace of U.

(ii) U is the union of its finite-dimensional G-invariant submodules.

The notation V < U will be used to indicate that V is a finite-dimensional G-

invariant submodule of U, while H E G will always refer to a closed subgroup of

G. The one-point compactification of V < U will be denoted by Sv, while Sn will

be understood to have the trivial G-action.

The category of compactly generated weak Hausdorff based G-spaces will be

denoted by GT, and its associated homotopy category by hGT, two G-maps being

equivalent if they are homotopic through G-maps. If G = 1, denote GT by T.

If X and Y are in GT, then hT(X,Y) is acted upon by G via conjugation of

representing classes. Denote by hTG the category whose objects are those of GT

and whose morphisms are given by

hTG(X,Y) = [X,Y]G,

where [, ] denotes hT( , ), for any pair of objects {X,Y) in GT, and where the

superscript G denotes the G-fixed set. Thus a morphism is a homotopy class of

maps /: X —► Y~ such that gfg-1 is homotopic to / for each g EG. [, ]g> on the

other hand, will denote the set of G-homotopy classes of G-maps as is customary.
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Let J be a family of closed subgroups H EG, and define categories d(T), M(T)

and U{7) as follows. The objects of each of these categories are the left coset spaces

G/H with H ET, while the morphisms are given by

B(7)(G/H, G/K) = lim[Sn A G/H+, Sn A G/K+}G,
n

M(7){G/H, G/K) = lim [Sv A G/77+, Sv A G/K+]G,

H{7){G/H, G ¡K) = lim [Sv A G/H+, Sv A G/K+f.

Here the subscript 4- denotes addition of a disjoint basepoint, the letters B, M,

and )/ refer to Bredon, Mackey and Hecke, respectively (for reasons to be clarified

below), and all limits in sight are colimits taken with respect to suspension. Note

that

M(7){G/H, G/K) = lim[5" A G/H+, Sn A G/K+f,
n

since one may associate with any map /: Sv AG/H+ —► Sv AG/K+ the composite

Sn A G/H+ -f Sv A G/H+^SV A G/K+ -> Sn A G/K+,

where n = dim^, via some map Sn —* Sv of degree one; this composite being in

M(7) if the map / is.
There is an evident diagram of additive functors

M7)

B(7).->H(I)

which one uses to pass from one category to another. When 7 contains a subgroup

from each conjugacy class, we shall supress 7 from the notation. (Although this is

not necessary, one may insist that, in general, 7 contain exactly one subgroup from

each conjugacy class of closed subgroups, so that B, M, and )/ are unambiguous.)

Denote by Ab the category of abelian groups.

Definition 1.1. Let C = B,M or H. A C( J)-functor is an additive contravariant

functor T: C(7) —► Ab. When C = S we refer to an J-Bredon functor, and similarly

for M and M.
The collection of C( J)-functors forms a category F(C(7)) whose morphisms are

the natural transformations. Note that the functors above induce a commutative

diagram:
■ F(M(7))

F(B(7))<-F{U(7))
MS*

Remarks 1.2. This notion of a Mackey functor is due to Lewis, May and

McClure while our notion of a Bredon functor coincides with that of a (contravariant)

coefficient system, due to Bredon and Dlman (see [Bl and II]). When G is finite, a

Hecke functor will be seen to be equivalent to a well-known algebraic functor—what

Green refers to as a cohomological functor in [Gl].
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The objects of the categories F(C(7)) will become the coefficient systems of

associated equivariant cohomology theories.

Examples 1.3. (i) With C as above, define

C(7)H:C(7)^Ab

by C(7)h{G/K) = C(7)(G/K,G/H), with the action on morphisms taken to be

the evident left one. The functors C(7)h will be seen to be canonically projective,

and will be the building blocks of our algebraic resolutions.

(ii) If X is a G-CW complex (in the sense of Matumoto [Ml]), then one may

define an associate d.g. 7-Bredon functor by

Cn{X)(G/H) = lim[Sn+r A G/H+, ErX"/X"-1]G,
r

where Xn is the n-skeleton of X. One may then verify that F(B(7)){C»{X),T) is

isomorphic with the Bredon-IUman cochain complex with coefficients in T E B(7)

(at least when 7 is closed under passage to subgroups under conjugacy). Similarly,

one may define a d.g.-Mackey functor, Dt(X), by

Dn(X)(G/H) = lim[5n+y A G/H+, EvXn/Xn-1]G,

and verify that, for T E M{7), F{M{7)){D,{X),T) once again gives the Bredon-

IUman cochain complex for suitable 7. This approach is used by Lewis, May and

McClure to set up ordinary RO(G)-graded cohomology. Note that the homotopy

sequence for the pair (Xn,Xn_1) gives morphisms 5*: G„(X) —► C„_i(X) and

similarly for the D,(X).

(iii) If G if finite, then B{7){G/H, G/K) is the free abelian group on (G/K)H =s

NK{H)/K, where NK(H) = {g E G : gHg'1 c K}. Further, M(7)(G / H, G / K)
may be seen to be equivalent to A(G/H X G/K), where A denotes the Burnside

functor of torn Dieck [Dl]. (Also see [LI] for an equivalent formulation of M(7) in

the finite case.) Finally,

)l(7)(G/H,G/K) = UomZG{ZG/H,ZG/K) = (ZG/K)H,

where ZG/J denotes the free abelian group on the G-set G/J with the evident

ZG-action. This explains the choice of the names Bredon, Mackey and Hecke (also

see [RS]).

(iv) When G is finite, one has further canonical examples of C(J)-functors. If

T is any coefficient system in the sense of Bredon, then T is clearly an J-Bredon

functor; any Mackey functor in the sense of torn Dieck is an /-Mackey functor (by

the work in [LI]), while any ZG-module M determines an J-Hecke functor M via

the assignment G/H i-► MH = HomzG(ZG/77, M). Such functors are discussed in

[Wl and W2].

2. Homological algebra of C(J)-functors. Here we construct explicit projec-

tive resolutions in F(C{7)), and give examples arising from equivariant topology,

generalizing work in [Wl and W2].

Recall the C(J)-functors C(7)h of Example 1.3.

Lemma 2.1. Let C = B{7),M{7) or M(7), and let H E 7. Then C{7)H is a
projective C{7)-functor.
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Proof. This is essentially an elaboration of [Wl, 2.7], in which the result

is proved for C = M. One first observes that, for each T E F(C{7)) one has

F{C{7)){C{7)H,T) = T(G/H). To see this, define

i>:F(C(7))(C(7)H,T)^T(G/H)

by taking / to f(G/H)(lH), where 1« is the identity morphism on G/H in B(7).

Also define

<p:T(G/H)^F(B(7))(C(7)H,T)

by defining <¡>(t)(G/K) to be the composite

C(7)H(G/K) = C(7)(G/K,G/H)^T(G/K),

where e(r) = T(r){t) for t E T(G/H). Thus

<p{t)(G/K){x) = T(x){t)   for x E C{7)H(G/K).

That <p(t) is indeed a morphism of C(J)-functors may be checked by a diagram

chase, and that tp<j> = 1 is clear. One checks that (pip = 1 as follows. Given any

morphism /: C(7)h —>■ T and x E C(7)h{G/K) with K E 7, the diagram

C(7)H(G/H)    n%H)    T(G/H)

C{J)h(x) i T(x) I

C{7)„(G/K)      -+      T(G/K)

must commute, where x E C{7)(G/K,G/H). Chasing 1# around the diagram gives

f(G/K)(C(7)„(x))(lH) = f(G/K)(x) = T(x)(f(G/H)(lH)).

But this last expression is 4>ip(f)(G/K)(x), whence (¡>ip = 1 as claimed.

Projectivity of C{7)h now follows formally; one observes that any diagram of

the form
^ r

C(7)h'    A    T
in F(C(7)) may be completed by setting g = 4>(t) for any t 6 T'(G/H) such that

p(t) = f(G/H)(iH).   a
Construction 2.2. Let T E F{C{7)), and define Bt(C(7),C{7),T) a d.g. C(7)-

functor by taking

Bn(C{7), C(7), T)(G/H) = VC{7)(G/H, G/H0)

9 [C(7)(G/H0,G/m) ® • • • ® C(f)(G/Hn-uG/Hn)} ® T(G/Hn),

where the sum is taken over all distinct sequences (H0.Hn) of subgroups in 7.

dn : Bn(C(7), C{7), T) - ßn_i(C(7), C( J), T)

is given by dn(x) = J27=o(~l)%Fi{x), where Fl is specified on generators by the

formula

7i°/[/2,---,/n]í if¿ = 0;

Fi(f[fi,..., /„]*) = I /[/i,. ..,/i+i o/<,..., /n]i    if 0 < i < n;
/[/1,...,/„_1]r(/n)(í) ifi = n.

Also define e: B0(C(7),C(7),r) -+ T in F(C(7)) by setting c(/[ ]í) = T(/)(i).
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Proposition 2.3. Let T E F(C{7)) be such that each T(G/H) is projective. Then

B*(C(7), C(7), T) is a projective resolution ofT in F(C(7)).

Proof. A contracting chain homotopy for each B*(C(7), C(7), T)(G/H) is given

by

8n{f[fl,.:,fn]t) = lH[f,fl,...,fn]t.

To see that each Bn(C{7), C(7), T) is projective, one observes that C(7)(G/J, G/K)

is a free Z-module for any J and K in 7, so that Bn(C(7), C(7), T) is a sum of

C(7)-functors of the form P®F where F is free, P = C(7)h for some H E 7, and

{P®F)(G/K) = P{G/K)®F îot K E7.   D
Definition 2.4. If T and T are in F(C{7)), we define H*(T,T')Ct?) to be

the derived functor Ext*c,yr\(T,T') which, by Proposition 2.3, is the cohomology of

F(C(7))(B.(C(7),C(7),nn
As a special case, one may take C = M, 7 = {e}, T = Z and T" = R for a ZG-

module R (as in Example 1.3(iv)). One then retrieves the cohomology of G with

coefficients in R, since

FCH{7))(B*,R) = HomZG(ß,(G/e),ß),

where B» = B,(X(7),H(7),Z) and B,(G/e) is a free resolution of Z (via the ZG-

action g • /[—]n = g o /[—]n, g: ZG <-° being multiplication of cosets g'H i-> gg'H).

Remark 2.5. If X is any G-CW complex with cells of type G/H x Dm with
H E 7 and skeleta Xm, then the C( J)-functors D«(X) and C»(X) are projective in

F(C{7)), since they are sums of canonical projectives of the type just discussed.

3. Associated ordinary cohomology theories. Here, we construct cellular equi-

variant theories based on the categories S(7) and M(7), and comment on problems

with U{7).
The following categorical constructions have been explored by Lewis, May and

McClure in [LMM], and by the author in [W4].

If M and N are contravariant additive functors C(7) —► Ab and if TV : C(7) —► Ab

is covariant, one may form

Homc( j)(M, N) = {natural transformations M —► N}

= F(C(7))(M,N)

and

M ®c(?) K =   ¿2 M{G/H) ® N(G/H) / ~,

where we define m ® /»(n) ~ mf* ® n for / a morphism in C(J).

Referring to Example 1.3(h), one may form the complexes

C*(X,A7)B(7) =HomB(7)(G»(X),7V)

and

C*(X,Ñ)M{7) = UomM(r)(D,{X),TT)

as well as their homology counterparts,

C,{X,N)B{J) = C,(X)®ß{7)N

and

C.{X,NU{7) = D.(X)®HI7)N,
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giving rise, by passage to homology, to abelian groups which we denote by

H*G{X;Ñ)c{j) and HG(X;AT)c(7), respectively, with C = B or M. (Note that the

boundary operators are the natural ones, d* ® 1 and Hom(â», 1).)

Proposition 3.1. Let X be a G-CW complex with G-orbits of the form G/H for

H E7 ■ Then there exist natural isomorphisms

<j>: HG(X;Ñ)C{?)=HG(X;Ñ),

where the second expression denotes Bredon-IUman cohomology with coefficients in

N (regarded as a Bredon functor).

Proof. That the theories H*G(X;N)c{j) are, in fact, equivariant cohomology

theories follows at once from the projectivity of the C(J)-functors G,(X) and

D*{X) in their respective categories. In order to construct the homomorphisms

<j>, it suffices to observe that both C*(X;N)b(j) and C*(X;N)m{T) are sums of

copies of N(G/H1) with H1 E 7, and one copy for each G-cell of type G/H1 X D*,

and that the coboundary maps agree with those for Bredon-Dlman cohomology on

summands. This, in fact, gives an isomorphism on the cochain level, and hence the

result.    D

Let E7 be a G-space with orbit-types G/H for H E 7 such that E7H is

contractible for each such H. (These are the universal G-spaces first considered

by Palais.) In the next section, we shall show, via the use of Proposition 3.1, that

its Bredon cohomology is expressible in terms of Ext functors associated with the

category C{7).

Remarks 3.2. One could define a chain complex G*(X) in the category of

J-Hecke functors by setting

Cn(X){G/H) = colim[Sn+rG/77+, T,r Xn / Xn~l)G,

thereby obtaining a theory HG(X; N)x(?<¡ for /-Hecke functors N. The argument

in Proposition 3.1, however, shows that this is again HG(X;N) if X has only orbit-

types given by 7. One might have expected that HG(X;N)^^j) be an invariant on

the category hTG. That it is not (being one on hGT instead) results from problems

in the cellular theory for this cateogry. Indeed, the category hTG misbehaves in

the sense that if one has a commuting diagram of the form

X    -4   X'

U        U
A    ^   A

of G-spaces with / E hTG, then g need not be in hTG. Thus a cellular map X —> Y

in hTG need not induce a map Xn/Xn~1 -► Yn/Yn~1 in hTG.

4. Universal (Palais) G-spaces.  In [Wl] the following is shown.

Proposition 4.1. Let G be finite. Then H*(t;T)U{7) s H*G{E7;T), Bredon

equivariant cohomology of E7.

Here, 7i"*(Z;T)y(j) = Extw^-JZjT), as considered in §2, and 7 is closed under

passage to subgroups. The Hecke functor T is regarded as a Bredon coefficient

system via the natural functor described in §1, and assigns to a subgroup H not in

7 the trivial group O.
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We wish here to generalize this result, as well as the work in [W2], regarding

G-covering spaces.

Proposition 4.2. Let C = B or M, and let 7 be closed under passage, up to

conjugacy, to subgroups. Then there exist isomorphisms, natural in ~5 and T,

HG(E7; S) = HG(E7; S)B{7) = Ext'S( 7)(Z; S)

and

HG(E7-,T)^HG(E7-,T)M{I)^Ext*M{I)(MG',T)

forSEF{B) andTEF{M).

Proof. Let C*(E7) denote the chain complex in F(C(7)) associated with either

category. Then C*(E7)(G/H) is a projective resolution of C»(point)(G/77) for

each H E 7. Indeed, C*{E7){G/H) depends, by the definition of C,(E7) (and
G-cellular approximation), only on the //-equivariant homotopy type of E7 up to

chain homotopy. Since H G 7 implies that E7 is i-7-equivariantly contractible,

the assertion follows. It now follows that C»(E7) is a projective resolution of

C(point) = CG in the category of C(7)-functors, since each Cn(E7) is a sum of

objects of the form Ch with H E 7.

It suffices now to show that F{C{7)){C,(E7),T) = F{C){C,{E7),T) for any
T E F(C). But both chain complexes are isomorphic with corresponding sums of

T(G/H)'s, by the proof of Lemma 2.1. The result now follows.    D

Corollary 4.3.   There exist isomorphisms

Ext¿(7)(Z,5) = Ext*M{I)(MG, 3) = ExtJ(7)(Ä,3)

for any 7-Hecke functor S.IfT is an 7-Mackey functor, then the first isomorphism

continues to hold, with 15 replaced by T.

To end this section, we show how to generalize the work in [W2] to the case of

a general compact Lie group G and arbitrary coefficient systems.

Let A be a finite group. One defines a (G, A)-covering space p: E —► B just as in

[W2]; isotropy subgroups of G act on fibers via some homomorphism G(, —► A. If

the fixed sets of B are connected, then the homomorphisms G¡, —► A may be taken

to be the restriction of some fixed homomorphism o: G —► A. In general, we refer

to a (G, A)-covering space whose isotropy action on fibers arises from o : G —► A as a

(G, A, (r)-covering space. Such objects are classified by the G-space BGA = EA/A,

where EA is given a (G X A°PP)-action by the rule

(g, a)a0[ai,..., an] = o(g)a0a[a~1 a-^a,..., a~1ana]

(see [W2, §1] for details). That the classification continues to hold for G a compact

Lie group follows from the classification theory in [W3].

Proceeding as in [W2], we denote by iba the homomorphism G —► A given

by g h» a~1o(g)a for a E A, and let H^a c G X A°PP be the closed subgroup

{(h,ipa{h)-x)}hzH for H E G. Let 7 be the family of subgroups of G X A°PP

containing conjugacy representatives of H^a for every closed subgroup H and each

aEA.
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Now replace G by G x A°PP and consider Ext*C{7){CG,T) where C = B or M.

Since each (EA)H*° is contractible, one has the following

Proposition 4.4.   The Bredon-IUman cohomology of BGA is given by

HG(BGA; T) = ExtB{7){BG; T)   for any B{7) functor T.

Here 7 is the family of subgroups of G X A°PP specified above and T is associated

with 7 and the ambient group G X A°PP.

Proof.    One verifies that HG(BGA;T) = HGx^{EA;T), where Ä = A°PP,

by proceeding as in the proof of [W2, §3.2], but replacing C*(X)H* there by

C,(XMo).   a

Remarks 4.5. The structure of G-CW complexes has resulted in a topological

proof of the algebraic result 4.3. It would seem interesting to consider an algebraic

proof of this result.

Replacement of Ext* by Tor« gives one completely analogous results for homol-

ogy.

In the case of Bredon functors, the identification HG(E7,S) = Ext*B,7\(Z,S)

of Proposition 4.2 is studied by J. Slominska in [SI], where she gives a spectral

sequence converging to these Ext groups.
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