A GENERALIZATION OF THE SIERPIŃSKI THEOREM

J. J. DIJKSTRA

ABSTRACT. Sierpiński's theorem admits the following generalization. Let n be a nonnegative integer and X a compact Hausdorff space. If $\{F_i \mid i \in \mathbf{N}\}$ is a countable closed covering of X such that $\dim(F_i \cap F_j) < n$ for distinct i and j in \mathbf{N} , then every continuous mapping from F_1 into the n-sphere S^n is extendable over X.

Consider the following well-known theorem (see Engelking [3, p. 440] or, for sets in \mathbb{R}^n , Sierpiński [4]).

THEOREM 1. Let X be a continuum (i.e. a compact, connected Hausdorff space). If $\{F_i \mid i \in \mathbf{N}\}$ is a pairwise disjoint, closed covering of X then $F_i = X$ for some $i \in \mathbf{N}$.

The aim of this paper is to prove the following assertion, where dim stands for the covering dimension.

THEOREM 2. Let n be a nonnegative integer and X a compact Hausdorff space. If $\{F_i \mid i \in \mathbb{N}\}$ is a closed covering of X such that $\dim(F_i \cap F_j) < n$ for every i and j with $i \neq j$, then every continuous mapping from F_1 into the n-sphere S^n is continuously extendable over X.

The reader is encouraged to verify that Theorem 1 follows easily from Theorem 2 if one substitutes n = 0. We first prove the theorem for metric spaces.

LEMMA 3. Theorem 2 is valid in the class of metric spaces.

PROOF. We shall work with the following induction hypothesis for $n = 0, 1, 2, \ldots$

Let X be a compact metric space and M an absolute retract (AR). If $\{F_i \mid i \in \mathbf{N}\}$ is a closed covering of X such that $\dim(F_i \cap F_j) < n$ for every i and j with $i \neq j$, then every continuous $f: F_1 \to S^n \times M$ is extendable over X.

Consider the case n=0, where we have S^n is the discrete doubleton $\{-1,1\}$ and $\{F_i \mid i \in \mathbf{N}\}$ is pairwise disjoint. Assume that the closed set $A=f^{-1}(\{-1\}\times M)\subset F_1$ is nonempty. Let \tilde{X} be the space we obtain from X by identifying A to a single point a, let $q\colon X\to \tilde{X}$ be the decomposition map and let C be the component of a in \tilde{X} . C is a continuum with the pairwise disjoint, closed covering $\{\{a\}, B\cap C\}\cup \{F_i\cap C\mid i\geq 2\}$, where $B=f^{-1}(\{1\}\times M)$. According to Theorem 1 we have $C=\{a\}$. Since \tilde{X} is a compact Hausdorff space there is a clopen subset O of \tilde{X} with $a\in O$ and $O\cap B=\emptyset$. Because M is an AR we can find

Received by the editors May 20, 1983 and, in revised form, August 8, 1983.

1980 Mathematics Subject Classification. Primary 54F60.

Key words and phrases. Sierpiński's theorem, covering dimension, n-sphere.

continuous mappings $g_1: q^{-1}(O) \to \{-1\} \times M$ and $g_2: X \setminus q^{-1}(O) \to \{1\} \times M$ such that $g_1|A = f|A$ and $g_2|B = f|B$. Then $g_1 \cup g_2: X \to S^0 \times M$ is as required.

Assume now that the induction hypothesis holds for n. Let $\{F_i \mid i \in \mathbb{N}\}$ be a closed covering of X such that $\dim(F_i \cap F_j) \leq n$ for $i \neq j$, and let $f : F_1 \to S^{n+1} \times M$ be continuous. According to the countable sum theorem (Engelking [2, 3.1.8]) the set $B = \bigcup \{F_i \cap F_j \mid i, j \in \mathbb{N} \text{ with } i \neq j\}$ has covering dimension $\leq n$. Let x_1 and x_2 be two distinct points in S^{n+1} and note that $S^{n+1} \setminus \{x_1, x_2\}$ is homeomorphic to $S^n \times \mathbb{R}$. Using the separation theorem (Engelking [2, 4.1.13]) we find a closed covering $\{H_1, H_2\}$ of X such that $H_j \cap f^{-1}(\{x_j\} \times M) = \emptyset$ for j = 1, 2, and $\dim(H_1 \cap H_2 \cap B) < n$.

Consider the compact space $X' = H_1 \cap H_2$ and its closed covering $\{F_i \cap X' \mid i \in \mathbb{N}\}$. Obviously, we have

$$\dim(F_i \cap F_j \cap X') \le \dim(B \cap X') < n \text{ for } i \ne j.$$

Observe that $f|F_1 \cap X'$ is a continuous mapping into $(S^{n+1} \setminus \{x_1, x_2\}) \times M$, which space is homeomorphic to $S^n \times \mathbf{R} \times M$. Since $\mathbf{R} \times M$ is, as a product of AR's, itself an AR we may apply the induction hypothesis to find a continuous

$$g: X' \to (S^{n+1} \setminus \{x_1, x_2\}) \times M$$

with $g|F_1 \cap X' = f|F_1 \cap X'$. Observing that $S^{n+1} \setminus \{x_j\}$ is homeomorphic to \mathbf{R}^{n+1} select continuous functions

$$h_i: H_i \to (S^{n+1} \setminus \{x_i\}) \times M, \qquad j = 1, 2,$$

with $h_j|X'=g$ and $h_j|H_j\cap F_1=f|H_j\cap F_1$. Then $h=h_1\cup h_2$ is a continuous mapping from X into $S^{n+1}\times M$ which extends f and the lemma is proved.

NOTATIONS. Let d be a pseudo-metric on a space X. For $\varepsilon > 0$ and $x \in X$ let $S^d_{\varepsilon}(x) = \{y \in X \mid d(y,x) < \varepsilon\}$ be the ε -ball with respect to d. \mathcal{T}_d denotes that topology for which $\{S^d_{\varepsilon}(x) \mid x \in X \text{ and } \varepsilon > 0\}$ is an open basis. d is called an admissible metric on X if \mathcal{T}_d is contained in the topology of X. Let $\mathcal{U} = \{U_i \mid i = 1, \ldots, k\}$ be a finite collection of subsets of X. mesh_d \mathcal{U} is the maximum of the d-diameters of the elements of \mathcal{U} . If every point of X is contained in at most $n \geq 0$ members of \mathcal{U} then we denote this by ord $\mathcal{U} \leq n$. $\mathcal{V} = \{V_i \mid i = 1, \ldots, k\}$ is called a shrinking of \mathcal{U} if for every $i \leq k$, $V_i \subset U_i$.

LEMMA 4. Let n be a nonnegative integer. Suppose that X is a normal space and F a closed subset with $\dim(F) < n$. If $\mathcal{U} = \{U_i \mid i = 1, ..., k\}$ is a finite open covering of F in X then there is an admissible pseudo-metric d on X and a shrinking $\mathcal{V} = \{V_i \mid i = 1, ..., k\}$ of \mathcal{U} such that $\mathcal{V} \subset \mathcal{T}_d$, ord $\mathcal{V} \leq n$ and $F \subset \bigcup \mathcal{V}$.

PROOF. Let $\mathcal{U} = \{U_i \mid i = 1, \dots, k\}$ be an open covering of F in X. Consider $\mathcal{U}_F = \{U_i \cap F \mid i = 1, \dots, k\}$ and select an F-open shrinking $\mathcal{V} = \{V_i \mid i = 1, \dots, k\}$ of \mathcal{U}_F with $\bigcup \mathcal{V} = F$ and ord $\mathcal{V} \leq n$. Since F is a normal space we may assume that the V_i 's are cozero-sets in F such that the closure of V_i is contained in U_i . The set F is closed in the normal space and hence there are cozero-sets \hat{V}_i in X such that $\hat{V}_i \cap F = V_i$. Moreover, since $\mathrm{Cl}(V_i) \subset U_i$ we may assume that $\hat{V}_i \subset U_i$. Using real valued mappings that correspond with the cozero-sets $\hat{V}_1, \dots, \hat{V}_k$ we construct an admissible pseudo-metric d on X such that $\hat{V}_i \in \mathcal{T}_d$ for $i \leq k$. Define now for every $U \in \{O \cap F \mid O \in \mathcal{T}_d\}$ the set

$$U' = \{x \in X \mid d(x, U) < d(x, F \setminus U)\} \in \mathcal{T}_d,$$

where $d(x, \emptyset) = \infty$. It is easily verified that $U' \cap F = U$ and $U' \cap V' = (U \cap V)'$. This implies that $\operatorname{ord}\{(V_i)' \mid i = 1, \dots, k\} \leq n$ and hence that $\{\hat{V}_i \cap (V_i)' \mid i = 1, \dots, k\}$ meets the requirements of this lemma.

We have now concluded the preliminaries and shall prove the theorem.

PROOF OF THEOREM 2. Let f be a continuous function from F_1 into S^n . We construct (inductively) a sequence $\rho_1, \rho_2, \rho_3, \ldots$ of admissible pseudo-metrics on X. Let S^n be represented by the boundary ∂I^{n+1} of the cube I^{n+1} and let $\overline{f} \colon X \to I^{n+1}$ be a continuous extension of f. Take for ρ_1 the preimage under \overline{f} of a metric that corresponds with the euclidean topology on I^{n+1} and that is bounded by 1. Suppose that we have constructed ρ_m . Let $\alpha = (i,j) \in A = \{(k,l) \mid k, l \in \mathbb{N} \text{ with } k \neq l\}$. With Lemma 4 we can find an admissible pseudo-metric d_{α} on X and a finite covering V of $F_i \cap F_j$ such that $V \subset \mathcal{T}_{d_{\alpha}}$, ord $V \leq n$ and mesh $\rho_m V < 1/m$. Let $O = \bigcup V$ and consider the disjoint closed sets $F_i \setminus O$ and $F_j \setminus O$. Since X is normal we may assume that $d_{\alpha}(F_i \setminus O, F_j \setminus O) > 0$. Moreover, let d_{α} be bounded by 1. Define now the admissible pseudo-metric ρ_{m+1} on X by

$$\rho_{m+1}(x,y) = \max\{\rho_m(x,y)\} \cup \left\{ \frac{1}{i \cdot j} d_\alpha(x,y) \mid \alpha = (i,j) \in A \right\}.$$

If we put

$$\rho(x,y) = \max\{\rho_m(x,y)/m \mid m \in \mathbf{N}\} \quad \text{for } x, y \in X,$$

then it is obvious that

$$\mathcal{T}_{\rho_1} \subset \mathcal{T}_{\rho_2} \subset \cdots \subset \mathcal{T}_{\rho_m} \subset \cdots \subset \mathcal{T}_{\rho} \subset \mathcal{O},$$

where \mathcal{O} is the collection of open subsets of X.

Define the equivalence relation \sim on X by $x \sim y \Leftrightarrow \rho(x,y) = 0$. Let \tilde{X} be the quotient space X/\sim and let $q: X \to \tilde{X}$ be the decomposition mapping. Make a metric space of \tilde{X} by putting $\tilde{\rho}(q(x),q(y)) = \rho(x,y)$ for $x, y \in X$. Since X is compact and ρ is admissible, q is a closed mapping and $(X,\tilde{\rho})$ is a compact metric space. If $x, y \in F_1$ such that q(x) = q(y) then $\rho(x,y) = 0$ and hence $\rho_1(x,y) = 0$. Consequently, f(x) = f(y) and since q is closed there is a continuous $\tilde{f}: q(F_1) \to S^n$ with $\tilde{f} \circ q \mid F_1 = f$. Obviously, $\{q(F_i) \mid i \in \mathbb{N}\}$ is a closed covering of \tilde{X} .

It remains to show that $\dim(q(F_i) \cap (F_i)) < n$ for $i \neq j$. Let \mathcal{U} be a finite open covering of $q(F_i) \cap q(F_j)$ in \tilde{X} . We have that

$$F_i \cap F_j \subset \bigcup q^{-1}[\mathcal{U}] = \bigcup \{q^{-1}(U) \mid U \in \mathcal{U}\}.$$

Since $F_i \cap F_j$ is compact and since $q^{-1}[\mathcal{U}] \subset \mathcal{T}_\rho$ there is a Lebesgue number 1/m for $q^{-1}[\mathcal{U}]$, i.e. for every $x \in F_i \cap F_j$, $S_{1/m}^\rho(x)$ is contained in some element of $q^{-1}[\mathcal{U}]$. Since $\rho_1 \leq \rho_2 \leq \rho_3 \leq \cdots$ and every ρ_k is bounded by 1 we have that

$$S_{1/m}^{
ho_m}(x)\subset S_{1/m}^{
ho}(x)\quad {
m for\ every}\ x\in X.$$

Now there is a pseudo-metric d on X and a finite subcollection \mathcal{V} of \mathcal{T}_d such that $d/(i \cdot j) \leq \rho_{m+1}$, $\operatorname{mesh}_{\rho_m} \mathcal{V} < 1/m$, $\operatorname{ord} \mathcal{V} \leq n$ and $d(F_i \setminus O, F_j \setminus O) > 0$, where $O = \bigcup \mathcal{V}$. Every element V of \mathcal{V} is in \mathcal{T}_ρ and hence $q^{-1}(q(V)) = V$. This implies that $q[\mathcal{V}] = \{q(V) \mid V \in \mathcal{V}\}$ is an open collection in X and has the property $\operatorname{ord} q[\mathcal{V}] \leq \operatorname{ord} \mathcal{V} \leq n$. We may assume that every member of \mathcal{V} has points in common with $F_i \cap F_j$. It follows that for every $V \in \mathcal{V}$ there is a $U \in \mathcal{U}$ and an

 $x \in F_i \cap F_j$ such that $V \subset S_{1/m}^{\rho_m}(x) \subset q^{-1}(U)$ and hence $q(V) \subset U$. In order to prove that $q(F_i) \cap q(F_j) \subset \bigcup \mathcal{V}$ select a $y \in F_i$ and a $y' \in F_j$ such that q(y) = q(y'). Suppose that $y \notin O$. Since $O \in \mathcal{T}_{\rho}$, $q^{-1}(q(O)) = O$ and hence $y' \notin O$. Then

$$ho(y,y') \geq rac{1}{m+1}
ho_{m+1}(y,y') \geq rac{1}{(m+1)\cdot i\cdot j}d(y,y') \ \geq rac{1}{(m+1)\cdot i\cdot j}d(F_i\setminus O,F_j\setminus O) > 0$$

which contradicts q(y) = q(y'). This implies that $y \in O$ and $q(y) \in \bigcup q[\mathcal{V}]$. So we have proved that every finite open covering of $q(F_i) \cap q(F_j)$ can be refined by a finite open covering of order $\leq n$. This means that $\dim(q(F_i) \cap q(F_j)) < n$.

We have arrived at a position where we can apply Lemma 3, yielding the existence of a continuous $g: \tilde{X} \to S^n$ that extends \tilde{f} . Then $g \circ q$ is the required extension of f.

REMARKS. We mention two applications of the theorem. The space \mathbb{R}^n cannot be written as union of a sequence F_1, F_2, F_3, \ldots of compact sets with $\dim(F_i \cap F_j) < n-1$ for $i \neq j$. This follows directly from the fact that the identity mapping $\partial I^n \to \partial I^n$ is not extendable over I^n .

The second application concerns boundary sets in the Hilbert cube Q. If $(F_i)_{i=1}^{\infty}$ is a sequence of closed subsets of Q such that $Q \setminus \bigcup_{i=1}^{\infty} F_i$ is homeomorphic to the Hilbert space l^2 , then there is for each $n \in \mathbb{N}$ an infinite set $\{i_m \mid m \in \mathbb{N}\} \subset \mathbb{N}$ such that $\dim(F_{i_m} \cap F_{i_{m+1}}) > n$ for every $m \in \mathbb{N}$. This result was established in the author's thesis [1, 5.4.6], where the theorem plays a key role.

REFERENCES

- J. J. Dijkstra, Fake topological Hilbert spaces and characterizations of dimension in terms of negligibility, Thesis, University of Amsterdam, 1983; Math. Centre Tracts (to appear).
- 2. R. Engelking, Dimension theory, PWN, Warsaw, 1978.
- 3. ____, General topology, PWN, Warsaw, 1977.
- 4. W. Sierpiński, Un théorème sur les continus, Tôhoku Math. J. 13 (1918), 300-303.

MATHEMATISCH INSTITUUT, UNIVERSITEIT VAN AMSTERDAM, ROETERSSTRAAT 15, AMSTERDAM, THE NETHERLANDS