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A GENERALIZATION OF THE SIERPIÑSKI THEOREM

J. J. DIJKSTRA

ABSTRACT. Sierpiñski's theorem admits the following generalization. Let n

be a nonnegative integer and X a compact HausdorfT space. If {F¿ | i G N}

is a countable closed covering of X such that dim(F¿ n Fj) < n for distinct i

and j in N, then every continuous mapping from Fx into the n-sphere Sn is

extendable over X.

Consider the following well-known theorem (see Engelking [3, p. 440] or, for sets

in R", Sierpiriski [4]).

THEOREM 1. Let X be a continuum (i.e. a compact, connected Hausdorff

space). If {Fi \ i E N} is a pairwise disjoint, closed covering of X then í¿ = X for

some i E N.

The aim of this paper is to prove the following assertion, where dim stands for

the covering dimension.

THEOREM 2. Let n be a nonnegative integer and X a compact Hausdorff space.

If {Fi | i E N} is a closed covering of X such that dim(F¿ n Fj) < n for every i

and j with i ^ j, then every continuous mapping from Fx into the n-sphere Sn is

continuously extendable over X.

The reader is encouraged to verify that Theorem 1 follows easily from Theorem

2 if one substitutes n = 0. We first prove the theorem for metric spaces.

LEMMA 3.   Theorem 2 is valid in the class of metric spaces.

PROOF. We shall work with the following induction hypothesis for n = 0,1,

2,....

Let X be a compact metric space and M an absolute retract (AR). If {Fi \ i E N}

is a closed covering of X such that dim(F¿ n Fj) < n for every i and j with i ^ j,

then every continuous /: Fx —> Sn x M is extendable over X.

Consider the case n = 0, where we have Sn is the discrete doubleton

{ — 1,1} and {Fi \ i E N} is pairwise disjoint. Assume that the closed set A =

/_1({ —1} x M) C Fi is nonempty. Let X be the space we obtain from X by

identifying A to a single point a, let q: X —> X be the decomposition map and let

C be the component of a in X. C is a continuum with the pairwise disjoint, closed

covering {{a}, B n C}U{FlC\C \ i > 2}, where B = /_1({i} x M). According

to Theorem 1 we have C = {a}. Since X is a compact Hausdorff space there is a

clopen subset O of X with a E O and O D B = 0. Because M is an AR we can find
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continuous mappings gx:q~l(0) —» {-1} x M and g2: X\q~l(0) —> {1} x M such

that ç7i|A = /|A and g2\B = f\B. Then gx U g2:X —► S0 x M is as required.

Assume now that the induction hypothesis holds for n. Let {Ft \ i E N} be a

closed covering of X such that dim(F¿nF,-) < n for i ^ j, and let /: Fx —» 5"+1 xM

be continuous. According to the countable sum theorem (Engelking [2, 3.1.8]) the

set B = [J{Fi D Fj I i, ]'gN with ¿ ^ j} has covering dimension < n. Let xi and

x2 be two distinct points in Sn+1 and note that 5n+1\{xi,X2} is homeomorphic

to Sn x R. Using the separation theorem (Engelking [2, 4.1.13]) we find a closed

covering {HX,H2} of X such that H3 n /"Mi^} x M) = 0 for / = 1,2, and

dim(#i nfi2nß)<n.

Consider the compact space X' — Hx n //2 and its closed covering {F¿ D X' \ i E

N}. Obviously, we have

dim(F n F,- n X') < dim(ß nX') <n   for i ^ /.

Observe that / |Fi n X' is a continuous mapping into (5n+1\{xi, x2}) x M, which

space is homeomorphic to Sn x R x M. Since R x M is, as a product of AR's,

itself an AR we may apply the induction hypothesis to find a continuous

g:X'^(Sn+1\{x1,x2})xM

with g\Fx HI' = f\FxC\X'. Observing that Sn+1\{xj} is homeomorphic to Rn+1

select continuous functions

hj:Hj-*{Sn+1\{xi})xM,        j = 1,2,

with hj\X' = g and hj\H} n Fx = f\H3 n Fi. Then h = hx U h2 is a continuous

mapping from X into Sn+1 x M which extends / and the lemma is proved.

NOTATIONS. Let d be a pseudo-metric on a space X. For e > 0 and x E X

let Sç(x) = {y E X \ d(y,x) < e} be the e-ball with respect to d. Td denotes

that topology for which {Sf(x) \ x E X and e > 0} is an open basis, d is called

an admissible metric on X if Td is contained in the topology of X. Let U — {i/2 |

i — 1,..., k} be a finite collection of subsets of X. mesh,¿ U is the maximum of

the ¿¿-diameters of the elements of U. If every point of X is contained in at most

n (> 0) members of U then we denote this by ord U < n. ~\) = {Vt \ i = 1,..., k} is

called a shrinking of U if for every i < k,Vi E í/¿.

LEMMA 4. Leí n be a nonnegative integer. Suppose that X is a normal space

and F a closed subset with dim(F) < n. If U = {t7¿ | i = 1,... ,fc} is a finite
open covering of F in X then there is an admissible pseudo-metric d on X and a

shrinking "V = {V¿ | i = 1,..., k\ ofll such that "V C Td, ord "V < n and F c U "V.

PROOF. Let U = {Ut | i = 1,..., k} be an open covering of F in X. Consider

Uf = {Ui P\F | i = 1,..., k} and select an F-open shrinking V — {V¿ | i = 1,..., fc}

of Uf with (J "V = F and ord f < n. Since F is a normal space we may assume

that the Vj's are cozero-sets in F such that the closure of V¿ is contained in (7¿. The

set F is closed in the normal space and hence there are cozero-sets V* in X such

that Vi fl F = V¿. Moreover, since C1(V¿) C Í7, we may assume that V¿ C f/¿. Using

real valued mappings that correspond with the cozero-sets Vi,..., V¡t we construct

an admissible pseudo-metric <i on X such that Vi E Td for ¿ < /c. Define now for

every U E {O H F \ O E Td} the set

[/' = {x G X | d(x, U) < d(x, F\U)} e Td,
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where d(x, 0) = oo. It is easily verified that U'DF = U and U'nV = (UC\V)'. This

implies that ord{(V¿)' | i = 1,..., fe} "< n and hence that {V¿ fl (Vi)' \ i = 1,..., fe}
meets the requirements of this lemma.

We have now concluded the preliminaries and shall prove the theorem.

PROOF OF THEOREM 2. Let / be a continuous function from Fi into Sn. We

construct (inductively) a sequence pi,p2,Pz, • ■ ■ of admissible pseudo-metrics on X.

Let Sn be represented by the boundary dln+1 of the cube In+1 and let f:X—> In+1

be a continuous extension of /. Take for px the preimage under / of a metric that

corresponds with the euclidean topology on In+1 and that is bounded by 1. Suppose

that we have constructed pm. Let a — (i,j) E A = {(k, I) | fc, / E N with k ^ /}.

With Lemma 4 we can find an admissible pseudo-metric da on X and a finite

covering V of F, D Fj such that V C Tda, ord"V < n and meshPm "V < 1/m. Let

O — (J "V and consider the disjoint closed sets Ft\0 and Fj\0. Since X is normal

we may assume that da(Fl\0, Fj\0) > 0. Moreover, let da be bounded by 1.

Define, now the admissible pseudo-metric pTO+ion X by

Pm+i(x,y) = max{pm(x,y)} U I -—.da(x,y) \ a = (i,j) G A \ .

If we put

p(x, y) = max{pm(x, y)/m | m E N}        for x, y E X,

then it is obvious that

TP1 c TP2 c---cTPm c---cTpcO,

where 0 is the collection of open subsets of X.

Define the equivalence relation ~ on X by x ~ y o p{x,y) = 0. Let X be

the quotient space X/~ and let q: X —» X be the decomposition mapping. Make

a metric space of X by putting p(q(x),q(y)) = p(x,y) for x, jgl. Since X is

compact and p is admissible, q is a closed mapping and (X, p) is a compact metric

space. If x, y E Fx such that q(x) = q(y) then p(x,y) = 0 and hence pi(x,y) = 0.

Consequently, f(x) = f(y) and since q is closed there is a continuous /: q(Fx) —* 5"

with / o q | Fi = /. Obviously, {q(F¿) | i G N} is a closed covering of X.

It remains to show that dim(c7(Fî) fl (Fi)) < n for i ^ j. Let U be a finite open

covering of q(Ft) n q(Fj) in X. We have that

FiHFj E[Jq-1[U} = [J{q-1(U) \U EU}.

Since Fj flFj is compact and since t/_1 [¿7] C Tp there is a Lebesgue number 1/m for

t7-1[Zi], i.e. for every x € F¿ n Fj, Sp,(x) is contained in some element of g_1[¿/].

Since pi < p2 < p3 < ■ ■ ■ and every p^ is bounded by 1 we have that

SfrmC*) C Spl/m(x)    for every x EX.

Now there is a pseudo-metric d on X and a finite subcollection "V of Td such that

rf/(* ' j) < Pm+i, meshpm "V < 1/m, ord"V < n and d(Ft\0,Fj\0) > 0, where
O = (J"V. Every element V of "V is in Tp and hence c7~I(9(Vr)) = V. This implies

that g["V] = {q(V) \ V E "V} is an open collection in X and has the property

ordt/CV] < ord"V < n. We may assume that every member of "V has points in

common with F¿ D Fj.   It follows that for every V E ~V there is a U E U and an
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x E F, n Fj such that V C SPrTm(x) C q~l(U) and hence q(V) C (7. In order to

prove that q(Fl)r\q(FJ) C |J "V select ay E Fi and at/'e F,- such that q(y) = q(yl).

Suppose that y £0. Since O E Tp, q~1(q(0)) — O and hence y' £ O. Then

pM) * mTT^+l(y'y,) * (m+l).f-jd(y,y>)

> ,        *    .    .d(F-\0,Fj\0) > 0
(m + 1) • i • j J

which contradicts q(y) = q(y'). This implies that y E O and q(y) E \Jq["V}- So

we have proved that every finite open covering of q(Ft) n q(Fj) can be refined by a

finite open covering of order < n. This means that dim(c(F¿) n q(Fj)) < n.

We have arrived at a position where we can apply Lemma 3, yielding the existence

of a continuous g: X —► Sn that extends /. Then g o q is the required extension of

/•
REMARKS. We mention two applications of the theorem. The space R" cannot

be written as union of a sequence Fi, F2, F3,... of compact sets with dim(F¿ DF, ) <

n — 1 for i ^ j. This follows directly from the fact that the identity mapping

dln —> dln is not extendable over In.

The second application concerns boundary sets in the Hilbert cube Q. If (F{)^lx

is a sequence of closed subsets of Q such that Q\ \J°1X Fi is homeomorphic to the

Hilbert space I2, then there is for each n E N an infinite set {im \ m E N} C N

such that dim(F,m n F¿m+1) > n for every m E N. This result was established in

the author's thesis [1, 5.4.6], where the theorem plays a key role.
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