A BOUNDARY VALUE PROBLEM FOR SYMMETRIC ELLIPTIC SYSTEMS OF FIRST ORDER SEMILINEAR PARTIAL DIFFERENTIAL EQUATIONS IN OPEN SETS OF CLASS ${\cal C}^1$

R. SELVAGGI AND I. SISTO¹

ABSTRACT. Si dimostrano un teorema di unicità ed un teorema di esistenza per sistemi ellittici simmetrici a coefficienti costanti di equazioni alle derivate parziali del primo ordine semilineari in aperti di classe C^1 e con dati al contorno in L^p .

Introduction. An existence and uniqueness theorem was established in [3] for a boundary value problem related to an elliptic system of first order semilinear partial differential equations. The problem was considered in a bounded open subset Ω of \mathbf{R}^m ($m \geq 3$) of class C^2 and boundary data of class C^1 .

The study of a boundary value problem for first order linear elliptic systems with constant coefficients in bounded open sets of class C^1 carried out by the present authors in [7], suggested the extension of the results obtained in [3] to the case in which Ω is of class C^1 and the boundary data are in L^p .

In this paper, we prove an existence and uniqueness theorem for that problem, making use of the integral representation used by A. Avantaggiati in [2] for the solutions of the linear system considered there.

- 1. Consider the following problem:
- I. Let Ω be a bounded open subset of \mathbf{R}^m $(m \geq 3)$ of class C^1 ; let $f = (f_r)_{1 \leq r \leq 2n}$ be a finite sequence of functions such that
 - (i) $f_r(X, u)$ is continuous in u for almost every $X \in \Omega$ and is measurable in X for any $u \in \mathbb{R}^{2n}$;
 - (ii) if $2 \le s < +\infty$ and t = sm/(m-1), ab > 0, an $h \in]1 \frac{1}{t}$, 1[and an $a_r \in L^s(\Omega)$ exist such that

$$(1.1) |f_r(X, u)| \le a_r(x) + b|u|^h;$$

let $B=(b_{kq})_{1\leq k\leq n; 1\leq q\leq 2n}$ be a matrix whose elements are of class $C^0(\partial\Omega)$ with rank equal to n at any point of $\partial\Omega$ and let $b_0=(b_{k0})_{1\leq k\leq n}\in (L^s(\partial\Omega))^n$. Our problem is to determine a 2n-tuple $u=(u_q)_{1\leq q\leq 2n}\in (L^t(\Omega))^{2n}$ with first order derivatives a.e. in Ω , which satisfies an elliptic symmetric system of first order semilinear differential equations with real constant coefficients

$$\sum_{q=1}^{2n} \sum_{p=1}^{m} a_{rq}^{p} \frac{\partial u_{q}}{\partial x_{p}}(X) = f_{r}(X, u), \qquad r = 1, \dots, 2n,$$

a.e. in Ω , and is such that

Received by the editors December 30, 1982.

1980 Mathematics Subject Classification. Primary 35J65, 45P05.

¹Work supported by G.N.A.F.A. (C.N.R.).

(i₁) for any $\alpha \in]0,1[$, a $\delta > 0$ exists such that for any $q \in \{1,...,2n\}$ the maximal nontangential function of u_a ,

$$u_q^*(P) = \sup\{|u_q(X)| : X \in C_\alpha(P) \cap B(P, \delta)\},\$$

belongs to $L^s(\partial\Omega)$ (here $C_\alpha(P) = \{X \in \Omega : (X-P) \cdot N(P) > \alpha |X-P|\}$ where N(P) is the inner normal at P to $\partial\Omega$ and $B(P,\delta)$ is the open ball centered at P and with radius δ),

 (i_2) for almost every $P \in \partial \Omega$ and for any $q \in \{1, ..., 2n\}$, the limit

$$\lim_{X\to P;X\in C_{\alpha}(P)}u_q(X)$$

exists; if we denote this limit by $u_q(P)$ it satisfies the following conditions a.e. in Ω :

(1.3)
$$\sum_{q=1}^{2n} b_{kq}(P)u_q(P) = b_{k0}(P), \qquad k = 1, ..., n.$$

2. Let

(2.1)
$$a(N(P)) = (a_{rq}(N(P)))_{1 \le r, q \le 2n} = \left(\sum_{p=1}^{m} a_{rq}^{p} N_{p}(P)\right)_{1 \le r, q \le 2n}$$

where $N(P) = (N_1(P), ..., N_m(P))$. Denote by B^* the transpose of B, by I the unit matrix of order 2n and by 0 the null matrix of order n. If

(2.2)
$$D(P,\rho) = \det\begin{pmatrix} a(N(P)) - \rho I & B^*(P) \\ B(P) & 0 \end{pmatrix}$$

the following theorem holds.

THEOREM 2.1. If for any $P \in \partial \Omega$ the equation $D(P, \rho) = 0$ admits only positive (resp. negative) roots and if $u \in \mathbf{R}^{2n} \mapsto f(X, u)$ is an increasing (resp. decreasing) monotone function for almost every $X \in \Omega$, then problem I has at most one solution.

PROOF. If u^1 and u^2 are solutions of problem I, since we have, a.e. in Ω ,

$$\begin{split} \sum_{r,q=1}^{2n} \sum_{p=1}^{m} a_{rq}^{p} \frac{\partial}{\partial x_{p}} [(u_{q}^{1}(X) - u_{q}^{2}(X)) \cdot (u_{r}^{1}(X) - u_{r}^{2}(X))] \\ &= 2(f(X, u^{1}(X)) - f(X, u^{2}(X))) \cdot (u^{1}(X) - u^{2}(X)) \end{split}$$

and since, due to (i) and (ii), $f(\cdot, u^i(\cdot)) \in L^{t^1}(\Omega)$ (i = 1, 2) with $1/t^1 + 1/t = 1$, we have that the function

$$\sum_{r,q=1}^{2n}\sum_{p=1}^{m}a_{rq}^{p}(u_{q}^{1}(X)-u_{q}^{2}(X))\cdot(u_{r}^{1}(X)-u_{r}^{2}(X))$$

belongs to $W^{1,1}(\Omega)$. Hence, by means of arguments similar to those used in [3, Theorem 2.1], this theorem follows.

²If H is a Hilbert space, we say that $f: H \to H$ is an increasing (resp. decreasing) monotone function, if it satisfies the following condition: $\forall u, v \in H : u \neq v \Rightarrow (f(u) - f(v)) \cdot (u - v) > 0$ (resp. < 0).

3. Let $M = (M_{rq})_{1 \le r,q \le 2n}$ be the fundamental matrix of the system (1.2) defined by (5.1") in [2]. We note that the following properties were proved in [2]:

 (α_1) $M_{rs}(\lambda X) = \lambda^{1-m} M_{rs}(X), \ \lambda > 0,$

 $(\alpha_2) \ M_{rs}(-X) = -M_{rs}(X),$

 (α_3) M_{rs} is an analytic function in $\mathbb{R}^m - \{0\}$.

Let f be the vector which appears in (1.2). The following proposition holds:

PROPOSITION 3.1. If we set

(3.1)
$$F_1 e(X) = \int_{\Omega} M(X - Y) f(Y, e(Y)) dY,$$

(3.2)
$$F_2\psi(X) = \int_{\partial\Omega} M(Q - X)\psi(Q) dQ,$$

a.e. in Ω , we have that

- (i₃) F_1 and F_2 are continuous operators from $(L^t(\Omega))^{2n}$ into $(H^{1,s}(\Omega))^{2n}$ and from $(L^s(\partial\Omega))^{2n}$ into $(L^t(\Omega))^{2n}$, 3 respectively,
- (i₄) a constant c > 0 exists such that

$$(3.3) ||F_1 e||_{(H^1, \mathfrak{s}(\Omega))^{2n}} \le c(||a||_{(L^{\mathfrak{s}}(\Omega))^{2n}} + ||e||_{(L^t(\Omega))^{2n}}^h),$$

(3.4)
$$||F_2\psi||_{(L^t(\Omega))^{2n}} \le c||\psi||_{(L^s(\partial\Omega))^{2n}}$$

with $a = (a_r)_{1 < r < 2n}$.

PROOF. The statement for F_2 is an obvious consequence of Proposition 2.v in [4] which holds also in the case in which Ω is of class C^1 . Furthermore, by (i) and (ii) the map $e \mapsto f(\cdot, e(\cdot))$ is continuous from $(L^t(\Omega))^{2n}$ into $(L^s(\Omega))^{2n}$ and by 3.IV in [4] the operator $\alpha \mapsto \int_{\Omega} M_{rq}(X-Y)\alpha(Y)dY$ is continuous from $L^s(\Omega)$ into $H^{1,s}(\Omega)$. These facts immediately imply inequality (3.3).

In the sequel we will assume that for the quadratic form

(3.5)
$$\sum_{r,q=1}^{2n} a_{rq}(N(P))u_r u_q,$$

the following hypothesis is satisfied:

(I₁) Any root of the equation $\det(a(N(P)) - \rho I) = 0$ has a constant multiplicity with respect to $P \in \partial \Omega$.

Hence a finite covering $\{B_1,\ldots,B_N\}$ of $\partial\Omega$ exists made up of coordinate neighborhoods and for any $j\in\{1,\ldots,N\}$ a matrix $(d_{qr}^j)_{1\leq q\leq 2n, 1\leq r\leq n}=d^j$ of functions of class $C^0(B_j)$ exists with rank n at any point of B_j and for any $B_j\cap B_i\neq\varnothing$ an orthogonal matrix $(\vartheta_{lk}^{ji})_{1\leq l,k\in n}$ of class $C^0(B_j\cap B_i)$ exists such that

$$d_{qr}^i = \sum_{l=1}^n \vartheta_{lr}^{ji} \cdot d_{ql}^j, \qquad \forall r \in \{1, ..., n\} \, \forall q \in \{1, ..., 2n\}$$

(see n.5 of [7]).

$$||f||_{H^{1,s}(\Omega)} = ||f||_{L^{s}(\Omega)} + \sum_{|\alpha|=1} ||D^{\alpha}f||_{L^{s}(\Omega)}.$$

 $^{^3}H^{1,s}(\Omega)$ is the completion of $C^1(\overline{\Omega})$ with respect to the norm

We set, for any $e \in (L^t(\Omega))^{2n}$ and any $\varphi \in L^s(\{\vartheta\}_B)^{4,5}$

$$(3.6) \quad u(X) = \int_{\partial\Omega} M(Q - X)(d \cdot \varphi)(Q) \, dQ + \int_{\Omega} M(X - Y) f(Y, e(Y)) \, dY \quad \text{a.e. in } \Omega.$$

If we require the vector u to satisfy the boundary conditions (1.3) and if we take into account (3.5) in [6] and $(\alpha_1), (\alpha_2), (\alpha_3)$, for almost every $P \in \partial \Omega$, we have

$$(3.7) B \cdot C \cdot (d \cdot \varphi)(P) + \int_{\partial Q}^{*} B(P)M(P - Q)(d \cdot \varphi)(Q) \, dQ = g(P)$$

where

$$(3.8) \, \int_{\partial\Omega}^* B(P) M(P-Q) (d \cdot \varphi)(Q) dQ = \lim_{\epsilon \to 0^+} \int_{\partial\Omega - I(P,\epsilon)} B(P) \cdot M(P-Q) (d \cdot \varphi)(Q) dQ,$$

$$(3.9)\ C(P) = -\int_{\pi_p}^* M(P-Q+N(P)) dQ = -\lim_{\epsilon \to \infty} \int_{\pi_p-C(P,\epsilon)} M(P-Q+N(P)) dQ,$$

(3.10)
$$g(P) = b_0(P) - B(P) \int_{\Omega} M(P - Y) f(Y, e(Y)) dY,$$

 $I(P,\epsilon)$ is the portion of $\partial\Omega$ having as a projection on the tangent plane π_p to $\partial\Omega$ at P, the ball with center P and radius $\epsilon>0$ and $C(P,\epsilon)$ is the ball of π_p with center P and radius $\epsilon>0$.

REMARK 3.1. From Proposition 3.1 and trace theorems it follows that the function defined in (3.10) belongs to $(L^s(\partial\Omega))^n$ and

$$(3.11) ||g||_{(L^{\mathfrak{s}}(\partial\Omega))^n} \le c_1(||b_0||_{(L^{\mathfrak{s}}(\partial\Omega))^n} + ||a||_{(L^{\mathfrak{s}}(\Omega))^{2n}} + ||e||_{(L^{\mathfrak{t}}(\Omega))^{2n}}^h).$$

In the sequel we assume the symbolic matrices

$$\mathcal{M}^{j}(P,\tau) = B(P) \cdot \Psi(P,\tau) \cdot d^{j}(P) \qquad \forall P \in B_{j} \ \forall \tau \in \mathbf{R}^{m-1} \text{ with } |\tau| = 1$$

associated with the singular integral equations (3.7), where $\Psi(P,\tau)$ is the symbolic matrix of the system of singular integral operators on $\partial\Omega$ (see n.3 of [7]) given by

$$\mathcal{A}_{rs}f(P) = f(P)\int_{\pi_p}^* M_{rs}(P-Q+N(P)) dQ + \int_{\partial\Omega}^* M_{rs}(P-Q)f(Q) dQ$$

is the function on the cotangent bundle of $\partial\Omega$ defined by

$$\Psi_{rs}(P, \sum \xi_i \, dx_i) = a_{rs}(x(P)) + \lim_{\epsilon \to 0^+} \int_{\epsilon < |\eta| < 1/\epsilon} e^{i\xi \cdot \eta} \, h(x(P), \eta) \, d\eta$$

where

$$a_{\tau s}(x) = \sqrt{1 + |\nabla \varphi(x)|^2} \left(\int_{|z| < 1} M_{\tau s}(z, 1 + \nabla \varphi(x) \cdot z) dz + \int_{|z| > 1} [M_{\tau s}(z, 1 + \nabla \varphi(x) \cdot z) - M_{\tau s}(z, \nabla \varphi(x) \cdot z)] dz \right),$$

$$h(x,z) = \sqrt{1 + |\nabla \varphi(x)|^2} M_{rs}(z, \nabla \varphi(x) \cdot z)$$

and P is in a coordinate neighborhood V with coordinates x such that with respect to this coordinate system

$$V \cap \Omega = \{(x, t) : x \in \mathbb{R}^{m-1}, t > \varphi(x)\} \cap V$$

where
$$\varphi \in C_0^1(\mathbb{R}^{m-1})$$
, $\varphi(0) = \partial \varphi(0)/\partial x_i = 0$, $i = 1, ..., m-1$.

 $^{^4}L^s(\{\vartheta\}_B)=\{\varphi=(\varphi^j)_{1\leq j\leq N}\in\prod_{j=1}^N(L^j(B_j))^n\colon \varphi^j=\vartheta^{ji}\varphi^i \text{ a.e. in } B_i\cap B_j\}.$

 $^{^5}d\cdot \varphi$ is the vector of $(L^s(\partial\Omega))^{2n}$ whose restriction to B_j coincides with $d^j\cdot \varphi^j$.

⁶The symbol of the following operator A_{ns} on $\partial\Omega$

$$\mathcal{A}\colon f\in (L^s(\partial\Omega))^{2n}\to C(P)\cdot f(P)+\int_{\partial\Omega}^*M(Q-P)f(Q)\,dQ,$$

satisfy the following assumption

(I₂) For any $P \in \partial \Omega$, $\tau \in \mathbb{R}^{m-1}$ with $|\tau| = 1$ and $P \in B_i$, $M^j(P, \tau) \neq 0$.

Furthermore, suppose that for any $P \in \partial \Omega$ the equation $D(P, \rho) = 0$ admits only positive (resp. negative) roots and that this further assumption is satisfied:

 (I_3) For almost every point $P \in \partial \Omega$ the quadratic form

$$\sum_{j,l=1}^{n} \sum_{r,q=1}^{2n} A_{rq}(N(P))b_{jr}(P)b_{lq}(P)\lambda_{j}\lambda_{l}$$

is positive (resp. negative) definite (where $(A_{rq}(N(P)))_{1 \le r,q \le 2n}$ is the inverse matrix of a(N(P))).

Under the above assumptions the function S which to any $\varphi \in L^s(\{\vartheta\}_B)$ associates the element of $(L^s(\partial\Omega))^n$ which appears on the left-hand side of (3.7) is injective and the equation $S(\varphi)=g$ with g given by (3.10) admits one and only one solution thanks to Remark (5.3) in [7]. Furthermore S is surjective: actually, by an argument similar to that used in [2] and taking into account the results obtained in [7], we obtain that the theorem holds for s=2, since the transposed homogeneous system associated with $S\varphi=g$ has only the trivial solution. For $s\geq 2$, if $g\in (L^s(\partial\Omega))^n$ and $\varphi\in L^2(\{\vartheta\}_B)$ is the only solution of the equation $S\varphi=g$, by an argument similar to that used to show Theorem 5.1 in [7] it follows that $\varphi\in L^s(\{\vartheta\}_B)$. These facts imply that S^{-1} is continuous and then an H>0 exists such that

$$(3.12) ||\varphi||_{L^{s}(\{\vartheta\}_{B})} \leq H||g||_{(L^{s}(\partial\Omega))^{n}}.$$

Proposition 3.2. If we set

(3.13)
$$T(e) = F_1(e) + F_2(d \cdot \varphi)$$

where φ is the unique solution of system (3.7), then

- (i₅) T is a continuous operator from $(L^t(\Omega))^{2n}$ into itself,
- (i_6) a $c_2 > 0$ exists such that

$$(3.14) ||T(e)||_{(L^{t}(\Omega))^{2n}} \le c_{2}(||b_{B}||_{(L^{s}(\partial\Omega))^{n}} + ||a||_{(L^{s}(\Omega))^{2n}} + ||e||_{(L^{t}(\Omega))^{2n}}^{h}).$$

PROOF. Let $(e_l)_{l\in \mathbb{N}}$ be a sequence of elements of $(L^t(\Omega))^{2n}$ converging there to e. From Proposition 3.1 it follows that $(F_1(e_l))_{l\in \mathbb{N}}$ converges to $F_1(e)$ in $(H^{1,s}(\Omega))^{2n}$. As a consequence, $(F_1(e_l))_{l\in \mathbb{N}}$ converges to $F_1(e)$ in $(L^t(\Omega))^{2n}$ and

$$\int_{\Omega} M(P-Y)f(Y,e_l(Y)) dY$$

converges to $\int_{\Omega} M(P-Y)f(Y,e(Y)) dY$ in $(L^s(\partial\Omega))^{2n}$. The statement (i₅) follows from (3.10) and the continuity of S^{-1} and F_2 , while (i₆) is an obvious consequence of (3.3), (3.4), (3.11) and (3.12).

Choose $\rho > 0$ such that⁷

(3.15)
$$||e||_{(L^{t}(\Omega))^{2n}} \le \rho \Rightarrow ||T(e)||_{(L^{t}(\Omega))^{2n}} \le \rho.$$

⁷The existence of ρ is ensured by (3.13) since $h \in]0,1[$.

PROPOSITION 3.3. With the same notations as in Proposition 3.2, if we set

$$E = \{ e \in (L^t(\Omega))^{2n} : ||e||_{(L^t(\Omega))^{2n}} \le \rho \},$$

then

- (i_7) $T(E) \subset E$,
- (i₈) The restriction of T to E has at least one fixed point.

PROOF. (i_7) is an immediate consequence of (3.14). As far as (i_8) is concerned, since E is closed and convex, it suffices, thanks to the Schauder fixed point theorem, to show that T(E) is relatively compact. To this aim let $(e_l)_{l\in\mathbb{N}}$ be a sequence of elements of E. Since, by (3.3), $(F_1(e_l))_{l\in\mathbb{N}}$ is bounded in $(H^{1,s}(\Omega))^{2n}$, it follows that $(F_1(e_l))_{l\in\mathbb{N}}$ has a subsequence which converges in $(L^t(\Omega))^{2n}$ thanks to the Sobolev embedding theorems and also $(\int_{\Omega} M(P-Y)f(Y,e_l(Y))\,dY)_{l\in\mathbb{N}}$ has a subsequence which converges in $(L^s(\partial\Omega))^{2n}$ thanks to the well-known trace theorems. From (3.10), (3.13) and the continuity of S^{-1} and F_2 it follows that $(T(e_l))_{l\in\mathbb{N}}$ has a subsequence converging in $(L^t(\Omega))^{2n}$.

At last the following theorem holds:

THEOREM 3.1. Problem I admits at least one solution.

PROOF. If u is a fixed point of T (see Proposition 3.3), then u is a solution of Problem I.

BIBLIOGRAPHY

- A. Ambrosetti and G. Prodi, Analisi non lineare, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) (1973).
- A. Avantaggiati, Problemi al contorno per i sistemi ellittici simmetrici etc., Ann. Mat. Pura Appl. (4) 61 (1963), 193-258.
- 3. G. Caradonna, Un problema al contorno per i sistemi ellittici di equazioni semi lineari alle derivate parziali del primo ordine, Note di Mat. 1 (1981), 187-202.
- C. Miranda, Sulle proprietà di regolarità di certe trasformazioni integrali, Atti. Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Ser. I (8) 7 (1965), 303-336.
- J. Necas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris; Academia, Prague, 1967.
- R. Selvaggi and I. Sisto, Regolarità di certe trasformazioni integrali relative ad aperti di classe C¹, Rend. Acad. Sci. Fis. Mat. Napoli (4) 45 (1978), 393-410.
- 7. ____, Problemi al contorno per i sistemi ellittici simmetrici del primo ordine etc., Note di Mat. 7 (1981), 155-185.

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI DI BARI, PALAZZO ATENEO, 70121 BARI, ITALY