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A BOUNDARY VALUE PROBLEM FOR

SYMMETRIC ELLIPTIC SYSTEMS OF FIRST ORDER

SEMILINEAR PARTIAL DIFFERENTIAL EQUATIONS

IN OPEN SETS OF CLASS C1

R. SELVAGGI AND I. SISTO1

Abstract. Si dimostrano un teorema di unicità ed un teorema di esistenza

per sistemi ellittici simmetrici a coefïicienti costanti di equazioni alie derívate

parziali del primo ordine semilineari in aperti di classe C1 e con dati al contorno

in W.

Introduction. An existence and uniqueness theorem was established in [3] for a

boundary value problem related to an elliptic system of first order semilinear partial

differential equations. The problem was considered in a bounded open subset fi of

Rm (m > 3) of class C2 and boundary data of class C1.

The study of a boundary value problem for first order linear elliptic systems with

constant coefficients in bounded open sets of class C1 carried out by the present

authors in [7], suggested the extension of the results obtained in [3] to the case in

which fi is of class C1 and the boundary data are in LA.

In this paper, we prove an existence and uniqueness theorem for that problem,

making use of the integral representation used by A. Avantaggiati in [2] for the

solutions of the linear system considered there.

1. Consider the following problem:

I. Let fi be a bounded open subset of Rm (m > 3) of class C1 ; let / = (fr)i<r<2n

be a finite sequence of functions such that

(i) fr(X, u) is continuous in u for almost every X G fi and is measurable in X

for any u E R2";

(ii) if 2 < s < +00 and t = sm/(m — 1), ab > 0, an h G]l —1,1[ and an ar E Ls(fi)

exist such that

(1.1) |/r(X,u)|<ar(2;) + i>|u|'1;

let B = (bkq)\<k<n;i<q<2n be a matrix whose elements are of class C°(3fi) with rank

equal to n at any point of 3fi and let 6o — (bko)i<k<n £ (Ls(3fi))n. Our problem is to

determine a 2n-tuple u = (uq)i<q<2n G (L*(fi))2" with first order derivatives a.e. in

fi, which satisfies an elliptic symmetric system of first order semilinear differential

equations with real constant coefficients

2n    m 3^

EE^rW^^"'1       r = l,...,2n,
,=ip=i       °xp

a.e. in fi, and is such that
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276 R. SELVAGGI AND I. SISTO

(il) for any a G]0,1[, a 6 > 0 exists such that for any q G {1,..., 2n} the maximal

nontangential function of uq,

u*q(P) = sup{K(X)| : X E Ca(P)nB(P,S)},

belongs to Ls(dU) (here Ca(P) = {X G fi : (X-P)-N(P) > a\X-P\} where N(P)

is the inner normal at P to <3fi and B(P, 6) is the open ball centered at P and with

radius S),

(i2) for almost every P EdYl and for any q G {1,..., 2n}, the limit

lim uJX)
X^P;X€Ca{P)

exists; if we denote this limit by uq(P) it satisfies the following conditions a.e. in fi:

2n

(1.3) X) bkq(Phq(P) = Mn fc=l,...,n.
9=1

2. Let

(2.1) a(7V(P)) = (a^P)))^,^ = ( f) <g7Vp(P) J
VP=1 A<r,g<2n

where N(P) = (¿Vi(P),.. .,Nm(P)). Denote by P* the transpose of B, by 7 the unit

matrix of order 2n and by 0 the null matrix of order n. If

,      , fa(N(P))-pI   B*(P)\
(2.2) WM.)-**(       ¿(» ¿  'j

the following theorem holds.

Theorem 2.1. 7//or any P G 3fi i/ie equation D(P,p) = 0 admits only positive

(resp. negative) roots and if uE R2n >-* f(X,u) is an increasing (resp. decreasing)

monotone function for almost every X G fi,2 then probleml has at most one solution.

Proof. If u1 and u2 are solutions of problem I, since we have, a.e. in fi,

2n      m ~.

E E <-érH&) -WW) • K'PO -«?(*))]
r,5=lp=l CXP

= 2(/(X, u*(X)) - f(X, u2(X))) ■ (u\X) - u2(X))

and since, due to (i) and (ii), /(-,«*(•)) G L'^fi) (i = 1,2) with 1/i1 + 1/i = 1, we

have that the function

2n      m

X   X a?,(«J(X) - u2(X)) ■ (ul(X) - u2(X))
r,q=l p=l

belongs to W1,1(fi).   Hence, by means of arguments similar to those used in [3,

Theorem 2.1], this theorem follows.

2If H is a Hubert space, we say that / : H —► H is an increasing (resp. decreasing) monotone

function, if it satisfies the following condition: Vu, v G H : u ^ v => (f(u) — f(v)) ■ (u — v) > 0 (resp.

<0).
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3. Let M = (Mrq)i<riq<2n be the fundamental matrix of the system (1.2) defined

by (5.1") in [2]. We note that the following properties were proved in [2]:

(oi) Mrs(\X) = X1-mMr.(X)) X > 0,

(a2) Mrs(-X) = -Mrs(X),

(as) Mrs is an analytic function in Rm — {0}.

Let / be the vector which appears in (1.2). The following proposition holds:

Proposition 3.1.  If we set

(3.1) Fle(X)=¡M(X-Y)f(Y,e(Y))dY,

(3.2) F2ip(X)= [   M(Q-X)ih(Q)dQ,

a.e. in fi, we have that

(Í3) Pi andF2 are continuous operators from (LÉ(fi))2n into (771,5(fi))2™ and from

(Ls(dQ))2n into (L^fi))271,3 respectively,

(Í4) a constant c > 0 exists such that

(3.3) ||Pie||(Hi,.(n))»» < c(\\a\\{L,{nWn + \\e\\fLtm,n),

(3.4) ||P2^||(L«(n))3» < c||V||(i.-(an))3»

with a = (ar)i<r<2n-

Proof. The statement for F2 is an obvious consequence of Proposition 2.v in

[4] which holds also in the case in which fi is of class C1. Furthermore, by (i) and

(ii) the map e >-» /(-,e(-)) is continuous from (L*(fi))2n into (Ls(fi))2n and by 3.IV in

[4] the operator ai->/fi Mrq(X — Y)a(Y)dY is continuous from Ls(fi) into 771,s(fi).

These facts immediately imply inequality (3.3).

In the sequel we will assume that for the quadratic form

2n

(3.5) J2 arq(N(P))uruq,
r,<? = l

the following hypothesis is satisfied:

(Ii) Any root of the equation det(a(N(P)) — pi) = 0 has a constant multiplicity

with respect to P G 5fi.

Hence a finite covering {Pi,.. .,P/v} of âfi exists made up of coordinate neigh-

borhoods and for any j G {1,...,N} a matrix (dqr)i<q<2n,i<7-<n = d? of functions

of class C°(Bj) exists with rank n at any point of Bj and for any Bj n P¿ # 0 an

orthogonal matrix (^jl)i<i,ken of class C°(Pj; nP¿) exists such that

<rqr = ÍL€-dql,      VrG{l,...,n}Vc7G{l,...,2n}
l=i

(see n.5 of [7]).

3//1,s(fi) is the completion of C1(Ü) with respect to the norm

ll/lln»..(o)-ll/llf(ci)+ E  W^fU-vay
ld=i
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We set, for any e G (L'(fi))2n and any <p G 7/({tf}B)4'5

(3.6) u(X)= í   M(Q-X)(d-<p)(Q)dQ+ [ M(X-Y)f(Y,e(Y))dY   a.e. infi.
Jan Jo.

If we require the vector u to satisfy the boundary conditions (1.3) and if we take

into account (3.5) in [6] and (ai),(a2),(a^), for almost every P G 3fi, we have

(3.7) B ■ C ■ (d ■ <p)(P) + [* B(P)M(P - Q)(d ■ <p)(Q) dQ = g(P)

where

(3.8) f B(P)M(P-Q)(d-p)(Q)dQ = lim  / B(P)-M(P-Q)(d-<p)(Q)dQ,
J dQ e—>0+ J dVl — I(P,t)

(3.9) C(P) = - [  M(P-Q + N(P))dQ = - lim [ M(P-QAN(P))dQ,
J-Kp e—>ooJ-Kp—C(P,e)

(3.10) g(P) = b0(P) - B(P) |n M(P - Y)f(Y, e(Y)) dY,

I(P, e) is the portion of 3fi having as a projection on the tangent plane 7rp to 3fi at

P, the ball with center P and radius e > 0 and C(P, e) is the ball of ttp with center

P and radius e > 0.

Remark 3.1.    From Proposition 3.1 and trace theorems it follows that the

function defined in (3.10) belongs to (7/(9fi))n and

(3.11) IMI(L*(an))" < ci(||i>o||(L»(an))" + IM|(L.»(n)P" + l|e||(!Lt(n))2n).

In the sequel we assume the symbolic matrices

MJ(P, t) = B(P) ■ *(P, t) ■ flP'(P)      VP G Bj Vr G Rm_1 with \t\ = 1

associated with the singular integral equations (3.7), where ^(P, r) is the symbolic

matrix of the system of singular integral operators on dfi (see n.3 of [7]) given by6

4 LAWb) = {<? = (<PJ)i<3<N € n?=i(V(BA)n: <P3 = tf»V a.e. in B% n Bj).

5c¡. ip is the vector of (Ls(8f2))2n whose restriction to Bj coincides with d> ■ tp3.

6The symbol of the following operator Ans on dQ

Ar,f(P) = f(P) f  Mrs(P -Q + N(P)) dQ +  f   Mrs(P ~ Q)f(Q) dQ

is the function on the cotangent bundle of 3Q defined by

t>rs(P,1£íidxi) = ar,(x(P)) +   lim    ( e^"h(x(P),V)dr!

where

ars(x) = Jl + |V<p(i)|2( f        Mrs(z,l + Vtp{x)-z)dz

+ [       [Mrs(z, 1 + V<p(x) ■ z) - Mrs(z, V<p(i) ■ z)\ dz),
^kl>i /

h(x,z) = yJl + \V<p(x)\2Mrs{z,V<p{x)-z)

and P is in a coordinate neighborhood V with coordinates x such that with respect to this

coordinate system

v n n = {(x, t)-.xe Rm_1, t > <p{x)} n y

where p £ C^R"1"1 ), ip(0) = a^(0)/axt = 0, i = 1,.. .,m-1.
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A:fE (Ls(dQ))2n -* C(P) ■ f(P) A f M(Q- P)f(Q) dQ,
J an

satisfy the following assumption

(12) For any P G dfi, r G Rm_1 with |r| = 1 and P G Bj, Mj(P, t) / 0.

Furthermore, suppose that for any P G 3fi the equation D(P, p) = 0 admits only

positive (resp. negative) roots and that this further assumption is satisfied:

(13) For almost every point P G 3fi the quadratic form

¿    ¿ Aq(N(P))bjr(P)blq(P)\J\l
j,l—l r,q=l

is positive (resp. negative) definite (where (Arq(N(P)))i<riq<2n is the inverse matrix

of a(N(P))).

Under the above assumptions the function S which to any p> E LS({#}B) as-

sociates the element of (Ls(dQ))n which appears on the left-hand side of (3.7) is

injective and the equation S(<p) = g with g given by (3.10) admits one and only

one solution thanks to Remark (5.3) in [7]. Furthermore S is surjective: actually,

by an argument similar to that used in [2] and taking into account the results

obtained in [7], we obtain that the theorem holds for s = 2, since the transposed

homogeneous system associated with Sip = g has only the trivial solution. For s >

2, if g G (Ls(dü))n and p> E L2({û}b) is the only solution of the equation Sip = g,

by an argument similar to that used to show Theorem 5.1 in [7] it follows that

<p G Ls({í?}b). These facts imply that S_1 is continuous and then an H > 0 exists

such that

(3-12) IMIlhWb) < P|MI(L»(an))".

Proposition 3.2.  If we set

(3.13) T(e) = Fx(e) + F2(d-p)

where <p is the unique solution of system (3.7), then

(15) T is a continuous operator from (L*(fi))2n into itself,

(ie) ac2 > 0 exists such that

(3.14) ||71(e)||(L«(n))2n < c2(\\bB\\(L>(an))" + ||o||(L»(n))»« + l|e||(i,t(n))3„).

Proof. Let (e¡)¡eN be a sequence of elements of (L4(fi))2n converging there to e.

From Proposition 3.1 it follows that (Pi(e;));eN converges to Fi(e) in (P1>5(fi))2n.

As a consequence, (Fi(e¡))¿GN converges to Pi(e) in (L*(fi))2n and

/ M(P-Y)f(Y,el(Y))dY

converges to ¡nM(P-Y)f(Y,e(Y))dY in (Ls(dYl))2n. The statement (i5) follows

from (3.10) and the continuity of 5_1 and F2, while (i6) is an obvious consequence

of (3.3), (3.4), (3.11) and (3.12).
Choose p > 0 such that7

(3.15) ||e||(z,i(n))2" < p =>• ||T(e)||(Lt(n))2n < p-

The existence of p is ensured by (3.13) since h £]0,1[.
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Proposition 3.3.   With the same notations as in Proposition 3.2, if we set

E = {eE(Lt(n))2n:\\e\\{Ltm,n<p},

then

(i7)T(E)cE,
(ig) The restriction ofTtoE has at least one fixed point.

Proof. (Í7) is an immediate consequence of (3.14). As far as (is) is concerned,

since E is closed and convex, it suffices, thanks to the Schauder fixed point theorem,

to show that T(E) is relatively compact. To this aim let (e¿)¡eN De a sequence of

elements of P. Since, by (3.3), (Pi(ei)),eN is bounded in (P^^fi))2", it follows that

(Pi(e¡))¡GN has a subsequence which converges in (L'(fi))2n thanks to the Sobolev

embedding theorems and also (fnM(P — Y)f(Y, ei(Y)) dY)i€is has a subsequence

which converges in (Ls(dQ))2n thanks to the well-known trace theorems. From

(3.10), (3.13) and the continuity of S'1 and F2 it follows that (r(e¡))í€N has a

subsequence converging in (L*(fi))2n.

At last the following theorem holds:

Theorem 3.1.  Problem I admits at least one solution.

Proof. If u is a fixed point of T (see Proposition 3.3), then u is a solution of

Problem I.
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