
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 91. Number 3. July 1984

ROOTS OF INVERTIBLY WEIGHTED SHIFTS

WITH FINITE DEFECT

GERARD E. KEOUGH1

Abstract. Let 7"be a unilateral invertibly weighted shift; i.e., T maps a square-sum-

mable vector sequence {.v0,.x,,...) from a Hubert space H to the sequence

{0, AqXq, A\X\,...}, where {A,,} is a uniformly bounded sequence of invertible

operators on H. If S0 is the identity operator on H, and S„ = /(„_,^4„_2 • • ■ A0 for

n > 1, then T is unitarily equivalent to multiplication by the variable Z on the space

H2(T) consisting of formal series 1xnZ" having coefficients x„ E H which satisfy

2||5„.r„||2 < +00. The commutant of this multiplication consists of formal series

1F„Z" which define bounded operators on H2(T)—where each F„ is an operator on

H, and the action of such a series on an element of H2(T) is given by the Cauchy

product of the two series. Using these characterizations, it is shown that if H has

finite dimension m > 2, then T has an nth root only if n divides m. Examples are

given of shifts T with (a) m = 2, but T has no square root, and (b) m — 4, T has a

square root, but no fourth root.

Many theorems encountered in the study of Hubert space operators were origi-

nally formulated and are now clearly understood only in response to the careful

study of particular (classes of) operators. However, few specific classes of operators

are well characterized. Perhaps the widest collection of nonnormal operators for

which extensive results have been obtained are the scalar- and operator-weighted

shifts. Indeed, Halmos [4] often appeals to representatives of these classes for an

appropriate example or counterexample in the Hubert space problem book.

Allen Shields [7] has collected and unified much of the theory of scalar-weighted

shifts. In this paper we extend the framework developed by Shields for the

scalar-weighted case to the operator-weighted case. §1 contains a characterization of

the commutant of an invertibly weighted shift. A matricial description has been

obtained by Lambert [5], but here the result is obtained within the language of

formal power series with operator coefficients acting as operators on a space of

formal power series with vector coefficients. Then, using this characterization, §2

obtains an existence result on the roots of an invertibly weighted shift. Specifically, if

T is an invertibly weighted shift for which the kernel of T* (the adjoint of T) has

dimension m, where 2 < m < +cc, then T has an nth root only if n divides m.
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Examples are given of shifts T with (a) m — 2, having no square root, and (b) m = 4,

having a square root but no fourth root.

Throughout the paper, H will denote a complex Hubert space. The term operator

will mean a bounded linear transformation on a Hubert space, and %(H) will

denote the collection of operators on H. In particular, / will denote the identity

element of %(H). (•, •) will generically denote the inner product on the Hilbert

space in context, and || ■ || the induced norm. If FE%{H), then {F}' is the

commutant of F. Lastly, if m and n are positive integers, then m mod n is the

remainder upon division of m by n.

1. A model for invertibly weighted shifts. Let l2(H) denote the Hilbert space of all

square-summable sequences in H. IWl2(H) consists of all those operators T on

/2( H ) whose action is given as

/(Xg,X|,...j      (U, AqXq, v4 j a: i ,... j,

where {An} is a uniformly bounded sequence of invertible operators on H.

Let T G IlVl2(H) and suppose {An} is the corresponding sequence of invertible

operators which defines T. (Notation. T~ {An}.) Let S0 — / and S„ = An^lA„_2

■ ■ ■ A0 for n > 1. H2(T) consists of all formal power series 2x„Z", where {x„} is a

sequence of vectors from H with the property that 2|j-S'„jc„||2 is finite. H2(T) is easily

seen to be a Hilbert space with respect to the inner product

The operator M, is defined on H2(T) by setting M„(Zx„Z") = lxnZn+]. If we

define a transformation W: l2(H) -* H2(T) by setting W{x„) = lS^xnZn, then W

is a unitary transformation which satisfies MZW — WT. Consequently, M, is unitarily

equivalent to T. Thus, M, is indeed bounded and ||M,|| = ||jT||.

Let {Fn} be a sequence of operators on H, and let <j) denote the formal power

series 1FnZn. The series for # gives rise to a mapping with domain H2(T), denoted

Mç, by setting

M,{lx„Z") = 2ynZ",

where for each index n we define yn — 2"k=0Fkxn_k. That is, M^ is defined by

formally computing the Cauchy product of the series for <i> (on the left) with 1xnZ"

(on the right). Let HX(T) denote the collection of all formal power series <j> = 2F„Z"

for which M^H^T) C H2(T). Since each element of H°°(T) defines a closed

transformation, HX(T) consists of operators on H2(T). Further, if <f>, \¡/ e H°°(T),

then M^M^ = M^, where <j>\p denotes the formal Cauchy product of <j> (on the left)

with \p (on the right). Note that Mz is just Af# when (¡> = IZK

Theorem 1.1. H°°(T) = {Mz}'.

Proof. Clearly, H°°(T) C{MZ}'. Suppose, however, D E {Mz}'. If x G H, then

D(xZ°) = 1xnZ" G H2(T), for some sequence {i„} C H. For each index n, de-

fined F„jc = xn. That each Fn is then well defined follows from the fact that the
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sequence {S„} is a sequence of invertible operators. To see that each F„ is bounded,

observe that

\\SnF„x\\2 = ||S„x„||2 < 2\\Skxk\\2 = \\D(xZ°)\\2 *£ \\D\\2 ■ \\x\\2.

Thus, \\F„\\ < ||S„-'|| • \\D\\. Lastly, if x,y G //andy >i>0,

{D(xZ'), yZj) = (DM!{xZ°), yZ') = (M'D(xZ°), yZ')

= {^FnxZ"+l, yZ>) = (M¿xZ% yZ>)

where <p = 1F„Z". Thus, D G H°°(T).    D

For each index k s= 0, let 6?A.(F) = {F G %(H)\4> = FZk G /F°(F)}. Note that if

<f> = FZ* G //°°(F), then ^ = FZk+] G //°°(F) as well, since M^MZ = M^,; conse-

quently, {6EA.(F)} is an increasing sequence. Further, if F G &k(T) and G G &j(T),

then F+ G G 6Emax(Ai7)(F), and FG G (îA+y(F). Thus, both 6£0(F) and (Î(F) =

Uk^0âk(T) are algebras containing the identity /.

Proposition 1.2. Let F G ÍB(//). F/ie« F G tB^F) //, a«í/o/i/v //, supJS^FS,,-1!!

is finite.

Proof. Let Vk denote the unilateral shift of multiplicity k on l2(H). If W denotes

the unitary transformation defined previously which satisfies M,W = WT, then it is

easy to see that W*M^W= VkD on l2(H), where <J> = FZk, and D is the diagonal

operator on 12{H) whose action is defined as {xn} -» {5'„+AF5'„"'x„}.    D

In closing this section, we remark that a special case of Theorem 1.1, where Fis a

pure quasinormal operator and T*T is invertible, has appeared in a paper of

Conway and Wu [1]. Also, the algebras {<£k(T)} were previously studied by A. L.

Lambert and T. R. Turner [6], in determining which invertibly weighted shifts have

the double commutant property. These algebras were also studied in special cases in

[2] and [3].

2. Roots of shifts. Given operators R and F and a positive integer n, we say that R

is an nth root of F if R" — T. Throughout this section we assume n is a fixed positive

integer, F G IWl2{H), T ~ {Ak}, and the dimension of H is m for a finite integer

m > 2.

Theorem 2.1. Let R be an nth root of T. Then n < m and m mod n is zero.

Proof. Since any roots of F necessarily lie in {F}', we consider R to be an nth

root of Mz on H2(T). Thus, suppose <h = lFkZk G //°°(F) and (M+y = Mz. Since

elements of //°°(F) have unique series expansions (reason: {Sk} is a sequence of

invertible operators), this implies that

(a) F0" = 0,

(b)2¡-=0F0"^-%F0k = I.

The minimal polynomial for F0 is then of the form Xj with 2 =£ j' < m.

First, suppose n > m. Then (b) can be rewritten as

j-\ j-\

/=  2 Fo''-kFlF0k = F0"-J ■  2 F¿~'-kF\Fk.

k=0 k=0
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However, n — j > 0 and, hence, m — rank(/) < rank(F0) < m, which is absurd.

Therefore, n < m.

Next, we claim that the minimal polynomial for F0 is exactly X". For suppose

F0"_1 = 0. Once again, rewriting (b) shows

n-l n-2

/ =  2 FJ-t-'Frf = F0 •  £ F¿'-2~kF,Fk,
k=0 k=0

which again would give m — rank(Z) < rank(F0) < m.

Lastly, because the minimal polynomial for F0 is X", its Jordan canonical form

will consist of a number of blocks of the form

0    1    0    •     ■     •    ol
0    0     1     •     ■     ■     0
0    0    0     1     •     •     0

0

where each block contains l's above the main diagonal, 0's elsewhere, and less than

or equal to n rows. The maximum rank of each block is thus n — 1. Let r be

(m mod n) and suppose r # 0. Suppose q is chosen so that m = qn + r. By inspec-

tion, then, it is clear that F0 has maximum rank if and only if each block in its

Jordan canonical form is as large as possible. Thus, the rank of F0 will be less than

or equal to (n — \)q + (r — 1), since there will be at most q blocks of n rows and a

block of r rows. Again rewriting (b), we see that

I = Fn lFo~
~%Fk + F,F,"-

k = 0

The first summand has rank at most (n

the rank of F0"_ ' is at most q. That is,

\)q + (r — 1); the second at most q, since

m = rank(Z) *a nq — q + r - 1 + q = m - 1.

This completes the proof.    D

We close the section with examples to show that while the condition (m mod n) = 0

is necessary for the existence of an nth root of F, it is not sufficient. Indeed, the

existence of particular roots depends largely on the structure of the sequence

{6fA(F)} and on the algebra &0(T) in particular.

Example 2.2. Let H have dimension 2 and, for each index n > 0, let A„ be the

operator on H defined by the matrix ({,',). Let T ~ {An} G IWl2{H). For each

n » 0, S„ will be defined by the matrix (lQ"). Using Proposition 1.2, one can directly

compute that each &k(T) is exactly the algebra of operators on H whose matrices

have the form (g*), for constants a and b, for each k » 0. If M, has a square root in

Z/°°(F), then there would exist operators F0 G &Q(T) and F, G 6?,(F) which satisfy

the operator equations F02 = 0 and F0F¡ + FiF0 = I. The first implies that F0 must

have a matrix of the form (°g), for some constant b. However, this will imply that

F0Fi + FlF0 has rank at most one.
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A reasonable question at this point would be: if F G IWl2{H) has any roots, will

it have all possible roots? The answer is no.

Example 2.3. Let F be the operator which is the square of the operator in

Example 2.2. Clearly F has a square root; however, it has no fourth root. To see this,

note that F will be defined by the sequence {An}, where for n 3*0, An will be

represented by the matrix

/ 1 2    0    0\
0 10    0
0 0     12'

\0 0    0     1 /

Consequently, S„ has matrix

/ 1 2n    0 0 \
0 10 0
0 0      1 2n

\0 0     0 1 /

for each n > 0. For each k s* 0, &k(T) can be computed to be exactly the collection

of operators on H which have a matrix representation of the form

'a b c d\
0 a 0 c

e f g h

\0 e 0 gl

for constants a,... ,n. If M, has a fourth root in HX(T), there would exist operators

F0 G &0(T) and F, G cî,(F) which satisfy equations (a) and (b) of the proof of

Theorem 2.1. Let a,... ,n be constants for which F0 has matrix

¡a b c d\
0 a 0 c

e f g h    ■
\0 e 0 g/

Note that F0 has determinant (ag — ce)2 — 0. If a were zero, then one of c or e

would be zero, and since F04 = 0, this would imply g is zero as well. It is then easy to

argue that equation (b) of the proof will not hold for any F,—say by examining the

upper left entry in the matrix expansion of the equation. Consequently, a is nonzero,

so we may as well consider F0 to have the form

/ 1 b     c     d\
0 10c
e f    ce     h

\0 e     0     ce'

In this case the upper left entry of F4 will be (1 + ce)3, so F0 actually has the form

/     1 b        c      d \
0 10c

-1/c /        -1      n     ■

I    0 -1/c     0     -1 /
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In this case we again see that equation (b) cannot be satisfied, by examining the

upper left entry in its matrix expansion.

As a final note, an "algebraic mth root" always exists:

Example 2.4. Let U+ denote the forward shift on H; that is, let U+ be given by

the matrix

¡0   0   0    •    ■    •    o\
10    0-     •     -0
0    10-    •    •    o   •

lo   0   0    •     ■     10'
Let U_ denote the backward shift; i.e., U_ is the adjoint of U+ . Let F0 = U_, and

F, = (U+ )m_1. If <f> is formally defined as the series <j> = F0Z° + F}Zl, then for each

k with 2 < k < m, <¡>k will formally have the series

lk-\ \

(F0)kZ°+     2 Ftx-]F,F¿\Z\
\ j=o !

Thus, <t>"' is the series IZ\ Hence, if F G IWl2(H), and if F0 G &0(T) and F, G

éB](F), F will have an mth root. Consequently, a sufficient condition that F have an

m th root is available; a somewhat stronger condition, of course, would be to require

that &0(T) = <3>(H), or that sup„^„FS^'H be finite for all F G <$>{H).
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