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INDECOMPOSABILITY OF IDEALS IN GROUP RINGS

M. M. PARMENTER1

ABSTRACT. Let H be a subgroup of G and let J be the (two-sided) ideal of

ZG generated by uj(ZH). In this note, we show that / is indecomposable as

an ideal in ZG. This extends a result of Linnell [1] and simplifies his argument

somewhat.

If H is a group, we will denote the augmentation ideal of the integral group ring

ZH by uj(ZH). In this very brief note, we prove the following result.

THEOREM. Let H be a subgroup of G and let I be the (two-sided) ideal of ZG

generated by ui(ZH).  Then I is indecomposable as an ideal in ZG.

The case where H is a normal subgroup of G was recently proved by Linnell [1].

Our argument is somewhat simpler and, of course, extends to arbitrary subgroups.

PROOF OF THEOREM. Suppose / = P © Q is a decomposition as an ideal of

ZG.
First consider the case where H is a torsion subgroup of G and let h G H. Then

h — 1 = p + q where p G P, q G Q and pq = qp = 0.
Hence, for some k, (1 + p + q)k = hk = 1.

Thus, k(p + q) + (i)(p2 + q2) + ■ ■ ■ + (pk + qk) = 0. Since PnQ = 0, we conclude

that (l+p)fc = (1 -f q)k — 1. Therefore, 1 + p and 1 + q are units of finite order

in ZG. Since (1 + p) + (1 + q) = 1 + h, either 1 + p or 1 + q must have a nonzero

identity coefficient. By [3, Corollary 2.1.3] and the fact that p and q are contained

in w(ZG), we conclude that either 1 + p = 1 or 1 + ç = 1. Hence h — 1 G P or

h — 1 G Q. Because (hy — l)(/i2 — 1) / 0 if /ii / /12 and h\, /12 ̂  1, we conclude

that I — P or I = Q, and we are done.

When H is not torsion, we copy part of the argument in [1]. Let F be the torsion

subgroup of the finite conjugate subgroup of G and let it: ZG —* ZF be the natural

projection. Since H <£F,v/e have tt(J) = ZF. By [2, Theorems 4.2.12 and 4.3.16],

we conclude that ZF = tt(I) = 7r(P) 8 tt(Q) with 7r(P) ^ 0 / it(Q). However, this

contradicts the fact that ZF is indecomposable [2].
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