## INDECOMPOSABILITY OF IDEALS IN GROUP RINGS

M. M. PARMENTER<sup>1</sup>

ABSTRACT. Let H be a subgroup of G and let I be the (two-sided) ideal of  $\mathbb{Z}G$  generated by  $\omega(\mathbb{Z}H)$ . In this note, we show that I is indecomposable as an ideal in  $\mathbb{Z}G$ . This extends a result of Linnell [1] and simplifies his argument somewhat.

If H is a group, we will denote the augmentation ideal of the integral group ring  $\mathbf{Z}H$  by  $\omega(\mathbf{Z}H)$ . In this very brief note, we prove the following result.

THEOREM. Let H be a subgroup of G and let I be the (two-sided) ideal of  $\mathbb{Z}G$  generated by  $\omega(\mathbb{Z}H)$ . Then I is indecomposable as an ideal in  $\mathbb{Z}G$ .

The case where H is a normal subgroup of G was recently proved by Linnell [1]. Our argument is somewhat simpler and, of course, extends to arbitrary subgroups.

PROOF OF THEOREM. Suppose  $I=P\oplus Q$  is a decomposition as an ideal of  ${\bf Z}G$ .

First consider the case where H is a torsion subgroup of G and let  $h \in H$ . Then h-1=p+q where  $p \in P$ ,  $q \in Q$  and pq=qp=0.

Hence, for some k,  $(1 + p + q)^k = h^k = 1$ .

Thus,  $k(p+q)+\binom{k}{2}(p^2+q^2)+\cdots+(p^k+q^k)=0$ . Since  $P\cap Q=0$ , we conclude that  $(1+p)^k=(1+q)^k=1$ . Therefore, 1+p and 1+q are units of finite order in  $\mathbb{Z}G$ . Since (1+p)+(1+q)=1+h, either 1+p or 1+q must have a nonzero identity coefficient. By [3, Corollary 2.1.3] and the fact that p and q are contained in  $\omega(\mathbb{Z}G)$ , we conclude that either 1+p=1 or 1+q=1. Hence  $h-1\in P$  or  $h-1\in Q$ . Because  $(h_1-1)(h_2-1)\neq 0$  if  $h_1\neq h_2$  and  $h_1,h_2\neq 1$ , we conclude that I=P or I=Q, and we are done.

When H is not torsion, we copy part of the argument in [1]. Let F be the torsion subgroup of the finite conjugate subgroup of G and let  $\pi\colon \mathbf{Z}G\to\mathbf{Z}F$  be the natural projection. Since  $H\not\subseteq F$ , we have  $\pi(I)=\mathbf{Z}F$ . By [2, Theorems 4.2.12 and 4.3.16], we conclude that  $\mathbf{Z}F=\pi(I)=\pi(P)\oplus\pi(Q)$  with  $\pi(P)\neq 0\neq \pi(Q)$ . However, this contradicts the fact that  $\mathbf{Z}F$  is indecomposable [2].

## REFERENCES

- P. A. Linnell, Indecomposability of the augmentation ideal as a two-sided ideal, J. Algebra 82 (1983), 328-330.
- 2. D. S. Passman, The algebraic structure of group rings, Interscience, New York, 1977.
- 3. S. K. Sehgal, Topics in group rings, Dekker, New York, 1978.

DEPARTMENT OF MATHEMATICS, MEMORIAL UNIVERSITY OF NEWFOUNDLAND, ST. JOHN'S, NEWFOUNDLAND A1B 3X7, CANADA

Received by the editors October 19, 1983.

<sup>1980</sup> Mathematics Subject Classification. Primary 16A26.

<sup>&</sup>lt;sup>1</sup>This work supported in part by NSERC Grant A-8775.