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BOUNDEDNESS OF VECTOR MEASURES

WITH VALUES IN THE SPACES L0

OF BOCHNER MEASURABLE FUNCTIONS

LECH DREWNOWSKI

Abstract. Let LQ(Z) be the F-space of all Bochner measurable functions from a

probability space to a Banach space Z. We prove that every countably additive

vector measure taking values in L0(Z) has bounded range. This generalizes a recent

result due to M. Talagrand and, independently, N. J. Kalton, N. T. Peck and J. W.

Roberts, asserting the same for the case when Z is the space of scalars.

Let (ß, 2, P) be a probability measure space and Z = (Z,|| • ||) a Banach space.

Recall (see [1, 2]) that a function /: ß -> Z is said to be (Bochner, strongly or P-)

measurable if it is the limit P-a.e. of a sequence of Z-valued 2-simple functions or,

equivalently, if there is an A e 2 with P(A) = 0 such that (i)/(S2 \^4) is a separable

subset of Z and (ii) /|(ß\/4) is Borel measurable, i.e., f~\B) D (Ü\A) e 2 for

every Borel subset B of Z. As usual, two measurable functions that are equal P-a.e.

are identified, and the vector space of all resulting equivalence classes of measurable

functions /: ß -> Z will be denoted L0(Z) = L0(ß, 2, P; Z). Of course, without

loss of generality we may—and will—assume that P is complete (i.e., subsets of

/'-null sets are in 2); then condition (ii) above takes a simplier form: / is Borel

measurable. L0(Z) will be considered with the metrizable vector topology of

convergence in P-measure; a convenient F-norm [3] defining this topology is given

by the formula

dif) - inf{a > 0: P{||/|| > a) < a).

Here, and in what follows, if /e L0(Z), then ||/|| is the function « -» ||/(<o)||, and

(11/11 > a) = (w e ß: ||/(w)|| > a). If Z = R, then we write simply L0 instead of

L0(R); L0+ = (/e L0: /> 0}. Evidently, if /e LQ(Z), then ||/|| e L0 and d(f) =

¿(ll/H). Our purpose is to prove the following

Theorem. Let % be a ring of subsets of a set X, and let m: % ->■ L0(Z) be a finitely

additive vector measure. If for every disjoint sequence (An) in % the sequence (m(An))

is bounded, then m is bounded (i.e., its range m(%) is a bounded subset of L0(Z)).
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As an immediate consequence of this we have

Corollary. // % is a o-field (or a-ring), then every countably additive vector

measure m: 9C■-* L0(Z) is bounded.

This corollary for Z = R (and hence also for the case when dim Z < oo) is a quite

recent result due independently to M. Talagrand [6] and N. J. Kalton, N. T. Peck

and J. W. Roberts [4], and answers a question first raised by Ph. Turpin [7].

Our proof of the Theorem is a modification of Talagrand's proof (which is surely

more direct than that of [4]), and we carry it over following [6] very closely. For % a

field of sets, it is based on a sequence of five lemmas strictly corresponding to those

in [6], so that the reader may easily compare both proofs. Our Lemma 6 is needed to

pass to the case where % is merely a ring of sets. In order to make the proofs of the

lemmas more transparent, we have decided to extract from these proofs, and

formulate as sublemmas, some more general facts which were implicitly contained in

them. In the Remarks at the end of the paper we extend the Theorem to metrizable

locally pseudo-convex spaces Z and arbitrary positive measure spaces (ß, 2, p).

The reader familiar with [6] will certainly agree with us that the most serious

difficulty one encounters when attempts to pass from the "scalar" L0 to the

" vector" L0 is to find a suitable substitute for the Paley-Zygmund inequality used in

[6]. It may be, therefore, somewhat surprising that a much more elementary

inequality established in Sublemma 1(a), valid in all Banach spaces, and the resulting

"measure of nonboundedness of m on Y", c(Y) (replacing b(Y) of [6]), are fully

adequate for our purposes.

The reader is referred to [6] for an intuitive motivation of the approach used there

—and in the present paper—and to [4] for more information (and relevant refer-

ences) on the significance of the fact that L0-valued measures are bounded.

The following easily verified properties of the F-norm d on L0 will be needed

below.

(dl) If/, g e L0 and |/| « |g|, then d(f) ^ d(g).

(d2) If/,/„ € L0+ and/„ T /(P-a.e.), then d(fn)U(f).
(d3) If/ E L0 and a = d(f), then P{||/|| > a) « a < P{||/|| > a).

(d4) If/ e L0, then P{||/|| > c) > c implies d(f) > c; more generally, P{||/|| > a)

^ b implies d(f) > min(a, b).

(These properties will also be used for the functions ||/||, where/ e L0(Z).)

Throughout, % is a ring of subsets of a set X and m: % -* L0(Z) is a finitely

additive vector measure. For Y e % we denote

Yn%= (A g9C:/1 c Y),

^(Y) = the set of all finite 90partitions of Y,

a(7) = inf sup{d(tmiA)):A e YC\%).
i>0

a(Y) is a natural measure of nonboundedness of m on Y n %: a(Y) > 0 if and only

if m(Y n %) is not bounded in L0(Z).

I will denote an arbitrary finite set of indices. Instead of, e.g., 2/e//,

maxBei6||w(5)||, we shall usually write 2,/, maxs||w(5)||.
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In Sublemmas 1(a) and (b), Q denotes the Bernoulli probability on E = {-1,1/;

thus Q((e}) = 2"card ' for all e e E.

Sublemma 1(a). For all finite families (z,),e/ in Z,

Q  £GF: Ee,z, > max 11 z,
1

Proof. Choose j in / so that ||z.|| = max/Hz,!!, and let Ef = (s e E: e,, = 1},

Ej = E\Ej+. If e g E, then define z(e) = YL¡eizl and set e' = (e'¡), where e'¡ = -e,

for /' *_/ and ej = e-. Since z(e) + z(e') = 2e,z,-, we have ||z(e)|| ^ ||z7|| or ||z(e')|| >

||Zy||. It follows that at least half of the elements e in Ej (and in Ej as well) satisfy

P(e)ll > lUylr- Hence

Ô{£ G E/: \\z(e)\\ > ||z,||} = Q{e g F/: ||z(e)|| > ||z,||} > eß(£/) = |

from which the required inequality follows immediately.

Sublemma 1(b). /// g L0(Z) for i g / and ß' g 2, then there exists J <z I such

that

P   w G ti': LfA»)^max||/(W)||U jp(ß').

In consequence, if ti' = {max/H/H 3* a) for some a > 0, then P{||E,./)|| > ^a}

> gPlmax^ll/ll > a}/or iome 7 c /. Applying this to a = í/(max/||/||) and using (d3)

a«i/ (d4), we get

d[¿Zfj) > 4</(max||y;.||)   for some J c /.

Proof. First consider the case when ß' = ß. Denote

D = l(o3, e) g ti x E:

and, for w g ß and e g E, let

Du = (e G F: (w, e) G D),       De = (u g ß: (w, e) G D}

i
> max||/-(w)||

From Sublemma 1(a) it follows that Q(DU) > 4 for all w g ß; hence, by the Fubini

theorem,

1
« (QiDu)dP(a)= (p(De)dQ(E)^ maxP(£»f).

^ o J a- F2     ■'a   '  "' ■'f £

Therefore, we can find (and fix) e g E such that P(De) > {, i.e.,

!>,/, ^ max
/

1
(*)

i   / ;

Denote /+= (i G /: e, = 1}, /-= /\/+; then E^,/ = E/+/, - E,-/ and from (*) it

follows that the inequality asserted in our sublemma holds either for J = I+ or

J = /".
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The general case follows from the above by replacing P by P' = (P(ß'))"1 •

P|(ß' n 2) and/ by/|ß' when P(ti') > 0; if P(ß') = 0, the sublemma is trivial.

Lemma 1. For every Y g %, & g 9(Y) and t > 0 there exists a subfamily <3' of t?

such that

d(tm(U@')) > ¿d(max||f/?i(,4)||).
cf

Proof. It suffices to apply the final conclusion of Sublemma 1(b) to/ = tm(Af),

where & = (A¡: i g /}.

Definition. For T g 9C we define

c(t,Y) = supi j(max||?w(^)||):6?. g <9(Y)\    for t > 0,

c(Y) = inf c(t,Y).
!>0

Note. The quantities a(Y) and c(Y) remain unchanged when m is replaced by am,

where a * 0.

The next lemma is a direct consequence of Lemma 1.

Lemma 2. For each Y g %, ±c(Y) < a(Y) < c(Y).

Lemma 3 will be preceded by four sublemmas.

Sublemma 3(a). // Y g %and& g <3>(Y), then

c(Y) = inf supíí¡?(max||íw(C)||):6F. -< ße^y)),

w/iere 6?■ -< G means that the partition G is a refinement of S, i.e., each A g 6? is the

union of those members of G which are contained in A.

Proof. Let 5 = cardé?.. Choose any % g <$(Y) and set G = {A n B: A g ép,

B g <$>); clearly & < G <= <3>(Y). If B g ®, then

l|w(ß)|| <   £ ||w(/l n 5)|| < s max||w(/l n 5)||.

Hence maxs||m(5)|| < smaxe||m(C)|| and so

t
d\ max

9,
-m(B)
s

^ d(max\\tm(C)\\)    foralloO.

It follows that

cí^,y) < supí¿?(max||ím(C)||):6F. <eGíP(F)| < c(t,Y)

and by taking the Ínfima over t > 0 we get the desired result.

Sublemma 3(b). Let (E, S, Q) be another probability space, and let D g 2 ® S.

For u ^ti ande ^ E set Du = (e G F: (w, e) G F)), F>£ = (ce G ß: (w, e) g D), and

assume that for some ti' G 2 and y ^ Owe have Q(DU) > 1 - y /or a// w g ß'. 77ze/i

if ô > 0 and H = (e <E E: P(ti' n F>f) ̂  (1 - ô)P(ti')}, then Q(H) ^ 1 - (y/8).

Hence also

Q(e G F: P(F>e) > (l - fi)P(O')} > 1 - (v/8).
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Proof. As in Sublemma 1(b) it is enough to consider the case ß' = ß. In this case

we have

\ - y < f QiDj dP(a) = JPiD') dQie) = Í [  + [     \p(D')dQ(e)

< Q(H) + (1 - ô)(l - Q(H)) = 8Q(H) + 1-5

and the desired inequality follows.

Below, if / is a finite set and 0 < r < 1, then we denote by Qr = Q, r the

probability measure on F = {0, Y}' which is the (card /)-fold product of the measure

on (0,1} that assigns mass 1 - r to the point 0 and mass r to the point 1.

Sublemma 3(c). //(a,);(E, is a finite family in R, then

QÁe G F: max a, = max(l - e¡)a¡) > 1 - r.
i

Proof. For some; g / we have Oj = max,a,. If e g F is such that e} = 0, then

max,(l - e¡)a¡ = a,. But QAe e F: e- = 0} = 1 — r, which proves the sublemma.

Sublemma 3(d). If(g¡)¡^i is a finite family in Lq , g = max, g, and

gE = max(l - E,)g,   fore = (e,) G F,

then for every ti' g 2 and ß > 0,

QAe g F: P(co g ti': g(o>) = gE(co)} > (1 - ßr)P(ti')} > 1 - l/ß.

In particular, if ti' = (g > a} where a > 0, then

QAe G F: P{ge > a) > (\ - ßr)P(g > a}} > I - l/ß

and hence, for a = d(g), we obtain

Q/e g F: d(ge) > (1 - ßr)d(g)) > 1 - l/ß.

Proof. This follows from Sublemmas 3(c) and 3(b) applied to D = {(w, e) g ß x

F: g(io) = gE(co)}, Q = Qr, y = r and S = ßr.

Lemma 3. Let Y g %, 6£ g <3>(7), 0 < r < 1, F = {0, if and Qr = QSr. For

£ = (za)a^sg Eset

Ae= U (A eê:eA = 1}.

Then for every ß > 0,

Q/e g F: c(Y\AE) > (1 - j8r)c(r)} ^ 1 - 1//3.

Proof. Fix t > 0 and let 6?. -< 6 g ^(T). For /l g 6£ and e g F define

g, = max{||iw(C)||: C g G, C c /!},   g = maxg^ = max||mj(C)||,
a s

(?E = {C g g: C c y\^} g ^(TX^J,

gE = max(l - e/4)g/( = max||fm(C)||.
& e,

Then from Sublemma 3(d) we have Q/e g F: ¿(gE) > (1 - ßr)d(g)) > 1 - l/ß;

hence, as c(í, T\^E) > J(gE), it follows that

QAe g F: c(í, Y\At) > (1 - JSr)íi(max||rwCC,lllU > 1 - 1//?.
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It  is  easily  seen  that  this  remains  valid  if d(màxe\\tm(C)\\)  is  replaced  by

sup{úf(maxe||ím(C)||): éB -< G G ^(Y)} and hence, using Sublemma 3(a), we get

Q/e G F: c(t, Y\AC) > (1 - ßr)c(Y)} > 1 - l/ß.

The required inequality now follows when t J, 0.

Lemma 4. For every Y g %, q g N an¿ í > 0, i/zere exwto 6? g <5p(y) ¿wc/i íto/

P(u g ß: card{^ g (f.: ||ím(,4)(w)|| > 1} > q) > ia(7).

Proof. The proof when t = 1 is the same as for Lemma 4 in [6]. From this and

the fact that a(Y) is the same for m as for tm, the case of an arbitrary / > 0 follows

directly.

Sublemma 5. //(g,),e, is a finite family in Lq ,0 < r < l,?eN and

ti' = (w g ß: card{/ g /: g¡(u) > 1} > q),

then for every 8 > 0,

ôieGF:P{maxg, > l} > (1 - o)P(ß')} > 1 - «"»(l - r)q,
ft

where I* = {/ G /: e, = 1).

Proof. Let£> = ((w, e) g ß x F: max/+ g,(w) > 1). If w g ß' and/(w) = (i g F

g,(w) ^ 1}, then card J(u) > q and

F\F»W = {eg F: maxg,(w)< l} c (e e F: }(«) c /\/E+).

Hence 1 - Qr(DJ < (1 - r)CätdJ(a) < (1 - r)" and so

Qr(Du) > 1 - il - r)q   for ail w g ß'.

Applying Sublemma 3(b) we are done.

Lemma 5. For every Y g 90, q e N and t > 0, if6?< g <$(Y) is chosen according to

Lemma 4, then for 0 < r < 1 awd or = ôa,rw ^aue

Qr(e^E:     sup    rf(/m(S)) > ¿a(y)\ > 1 - 2(1 - r)?,
*■ Be/f,n9C '

where At = U<4; E/4 = l>/ore;- (e^a g F = (0,1}S.

Proof. Applying Sublemma 5 with 8 = 1/2 and denoting &e = (A g 6B: eA = I)

g <3>(/lr), we obtain

Qr([e<EE:PÍ[max\\tm(A)\\> l} > ¿<y)} > 1- —.2(1 - r)?

because P(ß') > ia(T) by Lemma 4. Hence, using (d4) and then Lemma 1, we

arrive at the desired result.

Proof of the Theorem. We first consider the case when % is a field of subsets of

X. Suppose m(%) is not bounded, i.e., c(X) > 0. Fix any sequence 0 < tn |0. We
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construct by induction an infinite disjoint sequence (A^„) in % such that for every

n g N,

(*) d(tnm(Xn))>^c(X)

and

c(Yn)>{c(X),   where Y„ = X\ \J A¡.
i=i

Suppose the Xjs have been already defined for < < « (n > 1). Then we first

choose 0 < r < 1 so that (1 - 10r)c(y„) > {c(X), and next q g N satisfying 1 -

2(1 - >*)« S* 0.2. To this <?, Y = Y„ and ? = rn+, we select tf g ^(yj accordingly

with Lemma 4. Since 0.9 + 0.2 > 1, by Lemma 3 with ß = 10 and Lemma 5 we find

e g (0, if such that

c(Y„\Ae) > (I - l0r)c(Yn) > ic(X)

and

sup    d(tn+,m(B)) > Í¡a(Yn) > ^bc(Yh) > é¡c(X).
B<EAtn<%

We may, therefore, choose Xn+X g Ae n 9C so that (*) is satisfied for n replaced by

n + 1. Since Yn+] = Yn\Xn+i D y„\^E, we have c(Y„+l) ? c(Y„\Ae) > {-c(X).

(For n = 1 we choose A', in a similar way, by applying the above procedure with

y0 = x.)

Since /„ -» 0, condition (*) means that the sequence (m(Xn)) is not bounded in

L0(Z), contrary to the assumption of the Theorem.

If 9C is a ring of sets, then the preceding part of the proof shows that m(A n %)

is bounded for every A g %. Now boundedness of m(%) will follow from our next

lemma.

Lemma 6. Let L be a topological vector space and let m: % -* L be a finitely

additive vector measure such that:

(a)m(A C\%)is bounded for every A G 9C;

(b) the sequence (m( A „)) is bounded for every disjoint sequence (A „) in %.

Then m(%) is bounded.

Proof. Suppose m(%) is not bounded. Then there is a neighborhood U of 0 in L

such that U does not absorb m(%). Choose a balanced neighborhood V of 0 in L so

that V + V c U. Take any Ax g 9C with m(Al) <£ V and next, using (a), choose

0 < t2 < 1 = f, so that t2m(Ai n 90) c F. Then let B g 9C be such that t2m(B) í

t/. Since w(5) = /rzí/l, nß) + w(5\^,) and /2m(/4, ni)e V, denoting A2 =

B\A¡ we must have t2m(A2) í V. In the next step take any 0 < r3 < min(4, t2) so

that t3m((Ax U /42) n 9C) c K, and then choose 5 g 9C with r3w(5) G <7. Then, as

before, we find that if A3 = B\(A} U A2), then t3m(A3) í F.

Continuing this process we define an infinite disjoint sequence (/!„) in 6X and a

sequence 0 < t„ 10 such that tnm(An) £ F for all « g N, contradicting (b).

Remarks. (1) The Theorem, and hence the Corollary as well, extends in a quite

easy way to the case where Z is a metrizable locally pseudo-convex (in particular
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locally convex or locally bounded) topological vector space. (We follow [3] as

concerns terminology.)

The topology of such a space Z can be determined by a sequence of F-seminorms

(|| • ||„) such that each || • ||„ is /7,,-homogeneous for some 0 < pn < 1 (i.e., ||iz||„ =

I'l^"!!2!!«)» see [3< P- 109 or 5, III.2.1]. The corresponding topology of convergence in

P-measure in LQ(Z) is then defined by the sequence of F-seminorms (dn), where

d„(f) = d(\\f\\„). (Measurability of Z-valued functions is understood as in the

normed case.)

Now let m: %-> L0(Z) be as in the Theorem. Then m is bounded if we can prove

that m: % -» (L0(Z), dn) is bounded for each n. In order to see that it is really the

case, fix any n and let || • || = || • ||„, d = dn, p = p„. Also, let a(-) and c(-) be the

"measures of nonboundedness" of m corresponding to the F-seminorm || • ||. It

suffices to verify that Lemmas 1-5 still hold true in this setting.

We start by observing that Sublemmas 1(a) and 1(b) remain valid if max, • • • is

replaced by | max, ■ • • and \ max, • • ■, respectively. In consequence, Lemmas 1

and 2 hold true. Note that ^-homogeneity of || • || was not needed so far. It is,

however, of importance in some of the subsequent arguments. Firstly, it is needed in

the proof of Sublemma 3(a) (where t/s is to be replaced by t/sx/p). Secondly, it

implies that a(Y) = infí>0sup{J(í||m(/l)||): A g Y n %); consequently, Lemma 4

holds true, with the same proof as Lemma 4 in [6]. (We note, by the way, that the

latter proof requires some slight corrections due to the fact that in (3), p. 449 of [6], a

somewhat smaller number should be used instead of a.) The remaining sublemmas

and lemmas are proved as before; of course, since Lemmas 3 and 5 depend on

Sublemma 3(a) and Lemma 4, respectively, they also need ^-homogeneity of || ■ ||.

(2) Although this is pretty obvious, let us, nevertheless, note explicitly that the

Theorem (and the Corollary) remains valid when the probability measure P is

replaced by an arbitrary positive measure p. In this case we define a function /:

ß -> Z to be measurable if/|fi' is measurable (in the previous sense) for all ß' g 2

with p(ti') < oo. The resulting space L0(Z) = L0(ti, 2, p; Z) is then equipped with

the (nonmetrizable in general) vector topology of convergence in ft-measure on sets

of finite ft measure.
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