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SHORTER NOTES

The purpose of this department is to publish very short papers of unusually

elegant and polished character, for which there is no other outlet.

ON A RESULT OF S. DELSARTE

GREGORY CONSTANTINE1 AND RAVI S. KULKARNI2

Abstract. For an isomorphism type of a finite abelian ¿»-group X it is shown that

the matrix (p<s(DUIK») is nonsingular; D, Y e [S\S « X and S * X}. the set of

all proper isomorphism type of subgroups of X. Here s{ Y) denotes the signature of

Y. This completes the proof of a result of S. Delsarte which gives explicit formulas

for the number of automorphisms of X, the number of subgroups of X isomorphic to

Y (and the number of homomorphisms from Y into X) in terms of signatures.

1. Preliminaries. In [1], S. Delsarte generalizes the classical Möbius function in

number theory and uses it to establish explicit formulas for the number of automor-

phisms of a (finite) abelian group x, and the number of subgroups of x of a given

isomorphism type. These formulas are given in terms of signatures of the groups.

Since a finite abelian group decomposes canonically into its p-primary parts it

suffices to prove the result for abelian p-groups only. Establishing the nonsingularity

of a certain coefficient matrix ( p^J<D)î( r» ) is a crucial step in Delsarte's proof [1, p.

607]. A reference is given in [1] to account for the claim on nonsingularity; we have,

however, not been successful in completing the proof based on this reference. The

purpose of this note is to prove that the aforementioned coefficient matrix

( p^ J<D)J<yi> ) is indeed nonsingular (positive definite, in fact).

Let x be a (finite) abelian p-group. By X we denote the isomorphism type of x.

Also, v < x means y is a subgroup of x and Y < X means that X admits a subgroup

of isomorphism type Y.

Assume x = Zpmx © • • ■ © Zpmk; m, > 1. Let xx = [g g x: order of g divides

p). Then xx < x. Let \xx\ = pr[ (rx = k, in fact). Repeat this process in x/xx, i.e.,

look at (x/xx)x and denote its order by pr'-. Continuing this process we associate a

sequence of nonnegtive integers (ending in 0's) (r,, r2, r3,... ,0,0,...) which satisfies

r, > r2 ^ r3 > ■ ■ • and which we call the signature of x. Observe that, in fact, rn

= |{/: m, > n}\. Conversely, a given signature rx > r2 ^ /-3 > • • • determines

uniquely the isomorphism type of an abelian p-group as (Zp)r^r'- © (Zp)r2~r^ ©

• • • ®(Zpy>-°, where r„ = 0 for n > / + 1. ((Z*)'2-'3 means Zj © • • • © Z], a

direct sum of r2 - r3 factors.) Denote by s(X) the signature of X. (For example, if
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x= z then.  s(X) = (4,3,1,0,...);   conversely,   (4,3,1,0,...)

leads uniquely to (Zp)4~3 © (Z,2)3"1 © (Z3)1' Zp • Zp Z   = X.)

Let D ^ X. Assume s(X) = (r,,.. .,^,0...) and s(D) = (/,,.. .,/'fe,0...); then

i, < r1,...,ik < r^. In fact, for £mj> sequence of nonincreasing nonnegative integers

■.»*<*;A-' there exists aending in zeros (ix,...,iA,0...) and satisfying i1 < /-,,..

subgroup D < AT with signature (z'i,..., t'¿, 0... ).

For a direct sum A' © F we have s(X © 7) = s( A') + s(F) with usual (compo-

nentwise) addition of sequences. We shall also denote by (s(X), s(Y)) the usual

inner product of two sequences, i.e., if s(X) = (/-,, r2,...) and s(Y) = (sx, s2,...)

then(s(X),s(Y))=Lr=iV,-
We can now state Delsarte's result.

Theorem (S. Delsarte). For finite abelian p-groups x and y with signatures

s(x) = (rx,...,rk,0...) and s(y) = (sx,...,slt0...) satisfying r, < sx,.. ,,rk < sk we

have

(i) the number of automorphisms of x equals Fx(pri,...,prk),

(ii) the number of subgroups of y isomorphic to x equals

Fx{p\...,f*)/Fx{p\...,p'>)

where

Fx{zx,,..,zky-z?z2 • zi

ri-1

n(*i
i,=r2

X n(z2-Ph)
'2 = r}

rk~l

(iii) the number of homomorphisms from x into y equals (p (s(x),s(y))

The proof is contained in [1], the original work of S. Delsarte. It can also be found

in [3], rewritten in the more contemporary notation on Möbius inversion.

For a complete proof it is necessary to establish the following Lemma. Let X be

(an isomorphism type of) a finite abelianp-group. Let«y= {S: S < X and S # X).

Order í^in some way. Let C be the symmetric matrix (^/s(D'-í(y)>)) where D and Y

run over y ; the numbering of rows and columns in C comes from the order of 6f.

Lemma. C is nonsingular.

2. Proof of the Lemma. Let the signature of X be (rlf r2,...,rk,0...). The rows

and columns of C are labeled by the (isomorphism types of) proper subgroups of X;

think, instead, of its rows and columns being labeled by the corresponding signature

sequences. A block of C is a set of signatures (s, s2,...,sk,0...) with s2,...,sk fixed

and s varying, s2 < i < rx. The block (s, s2,... ,sk, 0...) is said to be larger or of the

same magnitude as the block (/, l2,...,lk,0...) if l2 > s2. Arrange the rows and

columns of C by blocks in their order of magnitude (larger to smaller—blocks of the

same magnitude can be arranged among themselves in any order).

Now write C = (C,j) as a partitioned matrix with CtJ = (p<s<.D)'s(Y)))t with s(D)

running through block i and s(Y) running through block j.
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Let block 1 be(s, s2,.. .,sk,0.. .),s2 < s < r,, and let block 2 be (/, l2,.. .,lk,0...),

l2 < I < ri (with /2 > s2). The signatures in blocks 1 and 2 (written as columns and

truncated at the /cth entry for simplicity) are, respectively,

s-, + 1    s-, + 2

and

Let a = EJL2 s,2, y = E?L2 /,2 and /3 = I,rL2 J,//-

//, /2 + 1

h
l2 + 2

u    u u

Tl\

Note that Cmn = VnnDmn, 1 < m, n < 2, where K,, (resp. F22) is a square matrix

with r, - s2 + 1 (resp. rx - l2 + 1) rows and (/, y)th entry p(/_1X*2+y-i) (resp.
,(i-iX/2+y-D ), and

Dn = padiag{p^+l-^)i^ri.S2+1;

ö12=p%ag(p^+'-1»)1</<ri_/2+1;

£)21 =p^diag(p /2(i2+/-i)

)im r,-i2 + l»

A

The significance of this rearrangement is that Vu and V22 are Vandermonde

matrices and hence nonsingular. Since l2 > s2 each column of C12 appears also as a

column of Cn. Multiplying the (/ + z')th column of Cu by pß~a and subtracting it

from the zth column of C12 we reduce C12 to the zero matrix (1 < i < rx — l2 + 1).

This process changes C22 into

(Py - P2ß-")C22= p-a(p"+a - p2ß)C22   {=C22,say).

We thus reduce by column operations the matrix

C
12

21 -22

to

Cn

C21     C22

Note that py+a - p2ß > 0, since y + a - 2/3 = E,rL2(/, - s,)2 > 0; y + a - 2/3 is

strictly positive since the two blocks in question are not identical, i.e., /, # s¿ for

some i, 2 < i < rx. This shows that C22 is also nonsingular.

We now repeat the process to make all C¡j = 0, for i < j. C will be reduced to a

lower block-triangular matrix with nonsingular diagonal blocks of Vandermonde

type. This proves the nonsingularity of C and completes the proof of S. Delsarte's

result.

Remark. C is, in fact, positive definite. One way to see this is to recall a result of

I. Schur [2]. It states that if A = (atJ) and B = (bu) are positive semidefinite then
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A° B = (üjjbjj) (componentwise multiplication) is again positive semidefinite.

Clearly, the matrix A = ((s(D), s(Y))) is positive semidefinite (it is an inner

product matrix). Then (lnp)"A"/n\ is positive semidefinite by Schur's result. (A" =

A° ■ ■ ■ ° A, n times). So then is our matrix

C- t^{lnp)"A"
»1 = 0

as a sum of positive semidefinite matrices. Starting with a positive semidefinite

matrix, one is, in general, led only to a positive semidefinite matrix by this process.

We just established the nonsingularity of C, however, and can now conclude that C

is positive definite.
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