SHORTER NOTES

The purpose of this department is to publish very short papers of unusually elegant and polished character, for which there is no other outlet.

ON A RESULT OF S. DELSARTE

GREGORY CONSTANTINE¹ AND RAVI S. KULKARNI²

ABSTRACT. For an isomorphism type of a finite abelian p-group X it is shown that the matrix ($p^{\langle s(D),s(Y)\rangle}$) is nonsingular; $D, Y \in \{S | S \le X \text{ and } S \ne X\}$, the set of all proper isomorphism type of subgroups of X. Here s(Y) denotes the signature of Y. This completes the proof of a result of S. Delsarte which gives *explicit* formulas for the number of automorphisms of X, the number of subgroups of X isomorphic to Y (and the number of homomorphisms from Y into X) in terms of signatures.

1. Preliminaries. In [1], S. Delsarte generalizes the classical Möbius function in number theory and uses it to establish *explicit* formulas for the number of automorphisms of a (finite) abelian group x, and the number of subgroups of x of a given isomorphism type. These formulas are given in terms of signatures of the groups.

Since a finite abelian group decomposes canonically into its *p*-primary parts it suffices to prove the result for abelian *p*-groups only. Establishing the nonsingularity of a certain coefficient matrix ($p^{\langle s(D),s(Y)\rangle}$) is a crucial step in Delsarte's proof [1, p. 607]. A reference is given in [1] to account for the claim on nonsingularity; we have, however, not been successful in completing the proof based on this reference. The purpose of this note is to prove that the aforementioned coefficient matrix ($p^{\langle s(D),s(Y)\rangle}$) is indeed nonsingular (positive definite, in fact).

Let x be a (finite) abelian p-group. By X we denote the isomorphism type of x. Also, $y \le x$ means y is a subgroup of x and $Y \le X$ means that X admits a subgroup of isomorphism type Y.

Assume $x \cong Z_p m_1 \oplus \cdots \oplus Z_p m_k$; $m_i \geqslant 1$. Let $x_1 = \{g \in x : \text{ order of } g \text{ divides } p\}$. Then $x_1 \leqslant x$. Let $|x_1| = p^{r_1}$ ($r_1 = k$, in fact). Repeat this process in x/x_1 , i.e., look at $(x/x_1)_1$ and denote its order by p^{r_2} . Continuing this process we associate a sequence of nonnegtive integers (ending in 0's) $(r_1, r_2, r_3, \ldots, 0, 0, \ldots)$ which satisfies $r_1 \geqslant r_2 \geqslant r_3 \geqslant \cdots$ and which we call the signature of x. Observe that, in fact, $x_n = |\{i : m_i \geqslant n\}|$. Conversely, a given signature $r_1 \geqslant r_2 \geqslant r_3 \geqslant \cdots$ determines uniquely the isomorphism type of an abelian p-group as $(Z_p)^{r_1-r_2} \oplus (Z_p^2)^{r_2-r_3} \oplus \cdots \oplus (Z_p^l)^{r_1-r_2}$, where $r_n = 0$ for $n \geqslant l+1$. $((Z_p^2)^{r_2-r_3} \text{ means } Z_p^2 \oplus \cdots \oplus Z_p^2)$, a direct sum of $r_2 - r_3$ factors.) Denote by s(X) the signature of X. (For example, if

Received by the editors July 29, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 05A15; Secondary 20B25.

Key words and phrases. Signature of a finite abelian p-group, Möbius inversion, generating function.

¹ This research has been supported by a summer research fellowship grant from Indiana University (1983).

² Supported by an NSF grant MCS 83-01614.

 $X = Z_p \oplus Z_p^2 \oplus Z_p^2 \oplus Z_p^3$, then s(X) = (4,3,1,0,...); conversely, (4,3,1,0,...) leads uniquely to $(Z_p)^{4-3} \oplus (Z_p^2)^{3-1} \oplus (Z_p^3)^{1-0} = Z_p \oplus Z_p^2 \oplus Z_p^2 \oplus Z_p^3 = X$.)

Let $D \leq X$. Assume $s(X) = (r_1, \ldots, r_k, 0, \ldots)$ and $s(D) = (i_1, \ldots, i_k, 0, \ldots)$; then $i_1 \leq r_1, \ldots, i_k \leq r_k$. In fact, for *any* sequence of nonincreasing nonnegative integers ending in zeros $(i_1, \ldots, i_k, 0, \ldots)$ and satisfying $i_1 \leq r_1, \ldots, i_k \leq r_k, \ldots$ there exists a subgroup $D \leq X$ with signature $(i_1, \ldots, i_k, 0, \ldots)$.

For a direct sum $X \oplus Y$ we have $s(X \oplus Y) = s(X) + s(Y)$ with usual (componentwise) addition of sequences. We shall also denote by $\langle s(X), s(Y) \rangle$ the usual inner product of two sequences, i.e., if $s(X) = (r_1, r_2, ...)$ and $s(Y) = (s_1, s_2, ...)$ then $\langle s(X), s(Y) \rangle = \sum_{i=1}^{\infty} r_i s_i$.

We can now state Delsarte's result.

THEOREM (S. DELSARTE). For finite abelian p-groups x and y with signatures $s(x) = (r_1, \ldots, r_k, 0 \ldots)$ and $s(y) = (s_1, \ldots, s_l, 0 \ldots)$ satisfying $r_1 \leq s_1, \ldots, r_k \leq s_k$ we have

- (i) the number of automorphisms of x equals $F_x(p^{r_1}, \ldots, p^{r_k})$,
- (ii) the number of subgroups of y isomorphic to x equals

$$F_{x}(p^{s_1},\ldots,p^{s_k})/F_{x}(p^{r_1},\ldots,p^{r_k})$$

where

$$F_{x}(z_{1},...,z_{k}) = z_{1}^{r_{2}} z_{2}^{r_{3}} \cdot \cdot \cdot z_{k-1}^{r_{k}} \left[\prod_{i_{1}=r_{2}}^{r_{1}-1} \left(z_{1} - p^{i_{1}} \right) \right] \\ \times \left[\prod_{i_{2}=r_{3}}^{r_{2}-1} \left(z_{2} - p^{i_{2}} \right) \right] \cdot \cdot \cdot \left[\prod_{i_{k}=0}^{r_{k}-1} \left(z_{k} - p^{i_{k}} \right) \right],$$

(iii) the number of homomorphisms from x into y equals ($p^{\langle s(x),s(y)\rangle}$).

The proof is contained in [1], the original work of S. Delsarte. It can also be found in [3], rewritten in the more contemporary notation on Möbius inversion.

For a complete proof it is necessary to establish the following Lemma. Let X be (an isomorphism type of) a finite abelian p-group. Let $\mathcal{S} = \{S: S \leq X \text{ and } S \neq X\}$. Order \mathcal{S} in some way. Let C be the symmetric matrix ($p^{\langle s(D), s(Y) \rangle}$), where D and Y run over \mathcal{S} ; the numbering of rows and columns in C comes from the order of \mathcal{S} .

LEMMA. C is nonsingular.

2. Proof of the Lemma. Let the signature of X be $(r_1, r_2, \ldots, r_k, 0 \ldots)$. The rows and columns of C are labeled by the (isomorphism types of) proper subgroups of X; think, instead, of its rows and columns being labeled by the corresponding signature sequences. A block of C is a set of signatures $(s, s_2, \ldots, s_k, 0 \ldots)$ with s_2, \ldots, s_k fixed and s varying, $s_2 \le s \le r_1$. The block $(s, s_2, \ldots, s_k, 0 \ldots)$ is said to be larger or of the same magnitude as the block $(l, l_2, \ldots, l_k, 0 \ldots)$ if $l_2 \ge s_2$. Arrange the rows and columns of C by blocks in their order of magnitude (larger to smaller—blocks of the same magnitude can be arranged among themselves in any order).

Now write $C = (C_{ij})$ as a partitioned matrix with $C_{ij} = (p^{\langle s(D), s(Y) \rangle})$, with s(D) running through block i and s(Y) running through block j.

Let block 1 be $(s, s_2, ..., s_k, 0...)$, $s_2 \le s \le r_1$, and let block 2 be $(l, l_2, ..., l_k, 0...)$, $l_2 \le l \le r_1$ (with $l_2 \ge s_2$). The signatures in blocks 1 and 2 (written as columns and truncated at the kth entry for simplicity) are, respectively,

$$\begin{pmatrix} s_2 & s_2 + 1 & s_2 + 2 & \cdots & r_1 \\ s_2 & s_2 & s_2 & \cdots & s_2 \\ s_3 & s_3 & s_3 & \cdots & s_3 \\ s_4 & s_4 & s_4 & \cdots & s_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{pmatrix} \text{ and } \begin{pmatrix} l_2 & l_2 + 1 & l_2 + 2 & \cdots & r_1 \\ l_2 & l_2 & l_2 & \cdots & l_2 \\ l_3 & l_3 & l_3 & \cdots & l_3 \\ l_4 & l_4 & l_4 & \cdots & l_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{pmatrix} .$$

Let $\alpha = \sum_{i=2}^{r_1} s_i^2$, $\gamma = \sum_{i=2}^{r_1} l_i^2$ and $\beta = \sum_{i=2}^{r_1} s_i l_i$.

Note that $C_{mn} = V_{nn}D_{mn}$, $1 \le m$, $n \le 2$, where V_{11} (resp. V_{22}) is a square matrix with $r_1 - s_2 + 1$ (resp. $r_1 - l_2 + 1$) rows and (i, j)th entry $p^{(i-1)(s_2+j-1)}$ (resp. $p^{(i-1)(l_2+j-1)}$), and

$$\begin{split} &D_{11} = p^{\alpha} \mathrm{diag} \big(\ p^{s_2(s_2+i-1)} \big)_{1 \leqslant i \leqslant r_1 - s_2 + 1}; \\ &D_{12} = p^{\beta} \mathrm{diag} \big(\ p^{s_2(l_2+i-1)} \big)_{1 \leqslant i \leqslant r_1 - l_2 + 1}; \\ &D_{21} = p^{\beta} \mathrm{diag} \big(\ p^{l_2(s_2+i-1)} \big)_{1 \leqslant i \leqslant r_1 - s_2 + 1}; \\ &D_{22} = p^{\gamma} \mathrm{diag} \big(\ p^{l_2(l_2+i-1)} \big)_{1 \leqslant i \leqslant r_1 - l_2 + 1}. \end{split}$$

The significance of this rearrangement is that V_{11} and V_{22} are Vandermonde matrices and hence nonsingular. Since $l_2 \geqslant s_2$ each column of C_{12} appears also as a column of C_{11} . Multiplying the (l+i)th column of C_{11} by $p^{\beta-\alpha}$ and subtracting it from the ith column of C_{12} we reduce C_{12} to the zero matrix $(1 \leqslant i \leqslant r_1 - l_2 + 1)$. This process changes C_{22} into

$$(p^{\gamma} - p^{2\beta - \alpha})C_{22} = p^{-\alpha}(p^{\gamma + \alpha} - p^{2\beta})C_{22} \quad (= \tilde{C}_{22}, \text{say}).$$

We thus reduce by column operations the matrix

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

to

$$\begin{bmatrix} C_{11} & 0 \\ C_{21} & \tilde{C}_{22} \end{bmatrix}.$$

Note that $p^{\gamma+\alpha} - p^{2\beta} > 0$, since $\gamma + \alpha - 2\beta = \sum_{i=2}^{r_1} (l_i - s_i)^2 > 0$; $\gamma + \alpha - 2\beta$ is strictly positive since the two blocks in question are not identical, i.e., $l_i \neq s_i$ for some $i, 2 \leq i \leq r_1$. This shows that \tilde{C}_{22} is also nonsingular.

We now repeat the process to make all $C_{ij} = 0$, for i < j. C will be reduced to a lower block-triangular matrix with nonsingular diagonal blocks of Vandermonde type. This proves the nonsingularity of C and completes the proof of S. Delsarte's result.

REMARK. C is, in fact, positive definite. One way to see this is to recall a result of I. Schur [2]. It states that if $A = (a_{ij})$ and $B = (b_{ij})$ are positive semidefinite then

 $A \circ B = (a_{ij}b_{ij})$ (componentwise multiplication) is again positive semidefinite. Clearly, the matrix $A = (\langle s(D), s(Y) \rangle)$ is positive semidefinite (it is an inner product matrix). Then $(lnp)^n A^n / n!$ is positive semidefinite by Schur's result. $(A^n = A \circ \cdots \circ A, n \text{ times})$. So then is our matrix

$$C = \sum_{n=0}^{\infty} \frac{1}{n!} (lnp)^n A^n$$

as a sum of positive semidefinite matrices. Starting with a positive semidefinite matrix, one is, in general, led only to a positive semidefinite matrix by this process. We just established the nonsingularity of C, however, and can now conclude that C is positive definite.

REFERENCES

- 1. S. Delsarte, Fonctions de Möbius sur les groupes abeliens finis, Ann. of Math. (2) 3 (1948), 600-609.
- 2. I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen suit unendlich vielen Veränderlichen,
- J. Reine Angew. Math. 140 (1911), 1-28.
 - 3. G. Constantine, Topics in combinatorics, Unpublished Manuscript, Indiana University, 1982.

DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, INDIANA 47405