MAXIMAL *p*-LOCALS

GEOFFREY R. ROBINSON¹

ABSTRACT. We prove a theorem on maximal *p*-local subgroups of finite groups which has the Baer-Suzuki theorem as a corollary.

In [1], H. Wielandt proved that if X is subgroup of the finite group G and X is subnormal in every maximal subgroup of G containing it, then either X is subnormal in G, or else X is contained in a unique maximal subgroup of G. He then gave another proof of the Baer-Suzuki theorem, using this result. In this paper, we prove a theorem about maximal p-local subgroups of finite groups which is similar in nature to Wielandt's result, and which also leads to a short proof of the Baer-Suzuki theorem. The result presented here can probably be obtained by a modification of Wielandt's argument, but we feel that the method of proof given here is of some interest in itself.

THEOREM 1. Let p be a prime and X be a p-subgroup of the finite group G. Suppose that $X \leq O_p(M)$ whenever M is a maximal p-local subgroup of G containing X, but that $X \nleq O_p(G)$. Then X is contained in precisely one maximal p-local subgroup of G.

PROOF. Let P be a Sylow p-subgroup of G containing X. We first claim that P is contained in precisely one maximal p-local subgroup of G. Suppose that $P \leq A \cap B$ where A and B are maximal p-local subgroups of G. Let Y be the weak closure of X in P with respect to G. Then $Y \triangleleft A$, for any conjugate of X contained in A is contained in $O_p(A)$ by hypothesis, and $O_p(A) \leq P$. Likewise, $Y \triangleleft B$, so that $A = N_G(Y) = B$ (for $Y \not \lhd G$ as $X \notin O_p(G)$).

We next claim that each maximal *p*-local subgroup of G which contains X contains a Sylow *p*-subgroup of G. Let A be a maximal *p*-local subgroup of G containing X, and let $Q \in \operatorname{Syl} p(A)$. Then $X \leq Q$, as $X \leq O_p(A)$. Let Z be the weak closure of X in Q with respect to G. Then $Z \triangleleft A$, and $Z \not \triangleleft G$, so $A = N_G(Z)$. Hence $N_G(Q) \leq A$ (for $Z \triangleleft N_G(Q)$) so that $Q \in \operatorname{Syl} p(G)$.

Suppose that the theorem is false. Then we may choose maximal p-local subgroups A and B with $X \leq A \cap B$, $A \neq B$, and $|A \cap B|_p$ as large as possible. Let $R \in \operatorname{Syl} p(A \cap B)$. Then $X \leq R$, as $X \leq O_p(A \cap B)$. Now $R \notin \operatorname{Syl} p(A)$ and $R \notin \operatorname{Syl} p(B)$ (for if $R \in \operatorname{Syl} p(A)$, then $R \in \operatorname{Syl} p(G)$, so A is the unique maximal p-local subgroup of G containing R, whereas $R \leq B$, and $A \neq B$). Let C be a maximal p-local subgroup of G containing $N_G(R)$ ($N_G(R) < G$ as $X \leq O_p(G)$ and $X \leq R$). Then $A \cap C \geq N_A(R)$; so $|A \cap C|_p > |R|$. By the maximality of $|A \cap B|_p$, we have A = C. Similarly, B = C, so A = B, a contradiction. The theorem is proved.

©1984 American Mathematical Society 0002-9939/84 \$1.00 + \$.25 per page

Received by the editors November 18, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 20D20; Secondary 20D35.

¹Research partially supported by NSF grant MCS-8302067.

COROLLARY 2 (BAER-SUZUKI THEOREM). Let X be a p-subgroup of the finite group G, p a prime. Suppose that $\langle X, X^g \rangle$ is a p-group for each $g \in G$. Then $X \leq O_p(G)$.

PROOF. We may suppose that $X \leq O_p(M)$, whenever M is a maximal p-local subgroup of G containing X. Suppose that $X \leq O_p(G)$. Then there is a unique maximal p-local subgroup of G containing X, say L. For each $g \in G$, $\langle X, X^g \rangle \leq L$, as $\langle X, X^g \rangle$ is a p-subgroup. Hence $X^g \leq L$, so $X \leq L^{g^{-1}}$, and hence $L^{g^{-1}} = L$. Thus $g \in N_G(L) \leq N_G(O_p(L)) = L$, a contradiction, as L < G and g is arbitrary.

REFERENCES

1. H. Wielandt, Kriterien für Subnormalität in endliche Gruppen, Math. Z. 138 (1974), 199-203.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, 5734 UNIVERSITY AVENUE, CHICAGO, ILLINOIS 60637