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TROTTER'S PRODUCT FORMULA FOR SEMIGROUPS
GENERATED BY QUASILINEAR ELLIPTIC OPERATORS

MICHIAKI WATANABE

ABSTRACT. Trotter's product formula is given for nonlinear semigroups in

L1 (fi^) generated by quasilinear operators of the form A<p, where 0 is a suit-

able function: formally exp(tA<£)u = limhjrj{exp(/iA<£i) ■ • ■ exp(hA<j>ic)}^t^h'u,

where <j) = <f>\ + ■ ■ ■ + <Pk- The proof is carried out by a new method for con-

struction of a semigroup with generator Atf> in L'fr?^).

1. Introduction and main theorem. Let </> be a differentiable function on

R with <p(0) = 0 such that <f>' is nonnegative and bounded on every bounded

subinterval of R. Let {T(t):t > 0} be the strongly continuous semigroup in the

Banach space L1(RN) with norm || • ||i defined by

(1.1) T(t)u(x) = (4ntyN/2 f    e-\x-y\2l^u(y)dy.
Jrn

Then the infinitesimal generator A of it is the Laplacian A = ^2i=id2/dx2 in

L1(RN). We consider a quasilinear operator A<¿, as an operator Açà in LX(RN)

defined by A^u = A-<t>(u) for u G D(A<t>), D(A4>) = {uG Ll(RN)nL°°(RN): </>(u) G

D(A)}.
We begin our theory with the generation of a nonlinear semigroup {S^t): t > 0}

in terms of A^ from the idea of

h~1(u(t-rh,x)-u(t,x)) = L-l(T(L) = I)4>(u(t,x)),

which has been employed in [3], however, as an approximation scheme for the

quasilinear parabolic equation du/dt = Ac6(w). We construct {5^,(í):í > 0} by

means of the operator Ch,m defined by

(1.2) Ch,mu = u + hL-l(T(L)-I)cp(u)

with h > 0 and L = h-sup\r\<m 4>'(r) for a positive integer m, and do not appeal to

any result concerning the semilinear equation 0_1(u) — Ait = / (see [2] with [1]).

The above method enables us not only to give a new proof of the generation but

also to deduce some properties of the semigroup {S¿,(í):í > 0}. As a consequence

we obtain Trotter's product formula as follows.

THEOREM. Let (pj, j = 1,... ,k, be functions on R satisfying the condition for

0 stated in the beginning of the present paper. Let {5^.(í):í > 0}, j = l,...,k,

and {S^t): t > 0} be the semigroups generated by A(pj, j = 1,..., k, and A^ with

0 = 4>i + • • • + 4>k, respectively.
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Then, for every u G Ll(RN) n L°°(RN),

{S^(h) ■ ■ ■ S<,k(h)}Wu -* S0(i)u    m LX(RN) ash[Q

uniformly on every bounded subinterval of [0, oo).

The proof of the theorem is obtained by demonstrating that for every A > 0 and

ueL1(RN)nL°°(RN),

(1.3) (/ - Xh-'iS^(h)---S^(h) - I))-1 -+(I- XA^-'u

in Ll(RN) as h J, 0, and by then applying Brezis-Pazy's convergence theorem

[5, Theorem 3.2]. Such a type of convergence as (1.3) has been discussed for

nonlinear semigroups mainly in Hilbert spaces (see e.g. [4 and 8]). Recently Coron

[6] established various product formulas in Ll(RN) for semigroups generated by

quasilinear differential operators of first order.

2. Construction of {S<),(t):t > 0}. We begin this section with a lemma, of

which we will make frequent use. Let Xm, for a positive integer m, be the totality

of u G Ll(RN) n L°°(RN) such that Wu]^ < m, and put X0 = Um=i x™- Then>

X0 equals Ll(RN) n L°°(RN), a dense subspace of Ll(RN).

We consider a family {U(h):h > 0} of operators mapping Xm into itself for

m > 1, and say that it satisfies the condition (C)TO if

(i) \\U(h)u-U(h)v\\x < ||«-v||i,
(ii)||t7(/iHP<||«]|p(p=l,oc),

(iii) U(h)uy — (U(h)u)y for y G RN where uy(x) — u(x + y),

(iv) ¡RN sgn(u) ■ h-l(U(h) - I)uf(x)dx < Cm||u||i \\M\\°o for all h > 0, u,v G

Xm and a positive constant Cm, where / is an arbitrary nonnegative bounded

function on RN with A/ G L°°(RN).

LEMMA 2.1. If a family {U(h):h > 0} satisfies the condition (C)m, then

J\,h = (I — Xh~l(U(h) — /))_1 is well defined for every A > 0, mops Xm into

itself, and satisfies, for u,v G Xm,

(1) \\Jx,hU~ J\,hv\\x < \\u-v\\x,

(2) \\Jx,hu\\p < \\u\\p (p = 1, oo),
(3) the set {J\thu:h > 0} is precompact in L*(RN).

PROOF. For a given u G Xm, J\,hU exists as a unique fixed point of the

transformation from the closed convex subset Xm of LX(RN) into itself: v —>

h(X + hylu + X(X + hylU(h)v. Clearly (1), (2) and, in particular,

(2.1) \\(J\,hu)y-Jx,hu\\x<\\uy-u\\x    îovyeRN

hold. Replacing u in (iv) by J\^u, we have

/    \.h,hu\f(x)dx<  (    \u\f(x)dx + Cm\\u\\x\\&fU.
Jrn Jrn

Putting f(x) = g(2\x\/p - 1) (p > 0) in the above, we obtain

f
/        \Jx,hu\dx

(2 2)      ':r'>p

<  f |«|drr + max{4p-2,2^-1}AGm||u||1(||0"||oo + (Ar-l)||9'lloo),
J\x\>p/2
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where g is a function of class C2: R —> [0,1] with values 0 for r < 0 and 1 for r > 1.

Thus, by Fréchet-Kolmogorov theorem, (2.1), (2.2) and (2) (p = 1) imply that

the set {J\,nu: h > 0} is precompact in L1(RN).    Q.E.D.

To construct {S<¡,(t):t > 0}, we will deal with the operator Ch,m defined on Xm

by (1.2) for each fixed m > 1.

LEMMA 2.2. For each m > 1, the family {G;,.m: h > 0} satisfies the condition

(C)m with Cm = supM<mçè'(r).

PROOF. Since r — hL~l(p(r) is nondecreasing in r and hence

\r - s - hL~l(4>(r) - (¡>(s))\ +hL~l\cj)(r) - <h(s)\ = \r - s\    forr.se \-m,m\,

Ch,m satisfies (i) and (ii).   The validity of (iii) is clear from (1.1) and (1.2).   It

remains to show (iv). Since h-l(Ch,m -1) = L~X(T(L) - /)</>(■),

sgn(u) ■ h-l(Ch,m - I)u < L~l(T(L) - /)|#ti)|

holds. Multiplication by f(x) and integration of this inequality over R.N gives

f    sgn(u)-h-1(Ch,m-I)uf(x)dx< f    \4>(u)\L-\T(L)-I)f(x)dx.    Q.E.D.
Jrn Jr"

PROPOSITION 2.3. A$ is a dissipative operator with domain D(A(¡)) dense in

L1(RN) satisfying the range condition

R(I - XA¿) D An    for any X > 0.

Moreover, for any m > 1, (7 — AA^)_1 maps Xm into itself and satisfies, for

every u,v e Xm,

||(7 - XA^-'u -(I- XA+)-lv\\i < \\u - vid,

||(J - AA*)-1«!^ < ||«l|p       (p=l,oo),

and

(2.3) (7-A/i-1(Gh,m-/))-1M^(/-AA^)-1u    in L>(RN)

as h I 0.

PROOF. Let u e Xm for an arbitrary m > 1 and let {hn}%L1 be a sequence

such that hn J. 0. Then, by Lemma 2.1, Lemma 2.2 implies that the sequence

{•7h„,mu}£°=i> where Jh,m = (I- ^h~1(Cfl^m - I))'1 for h = hn, contains a subse-

quence convergent to some Ux,m m L1(RN). The equality

(/ - pL~l(T(L) - I))-lX-\Jlmu - u)

= iT1 {{I - pL~l(T(L) - 7))"1 - I}4>(Jimu)    for p > 0

and the fact that, for every v G L1(RN),

(2.4)% (7-pr1(T(i)-7))^1t;->(7-/iA)-1t.   in L1(RN)

as í J. 0 imply that

(2.5) (7 - pA)-lX-\uKm -u)= p~x((I - pA)-1 - I)<t>(ux,m),
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that is, (7 - XA^ux.m = u with uA,m e D(Arj)) since ||uA,m||oo < IMIoo- Thus, the

dissipativeness of A^, which is obtained by letting t J. 0 in the inequality

f    sgn(u, - v2) ■ t~x(T(t) - I)(<t>(vx) - </>{v2)) dx<0
Jr"

for v\,v2 G D(Arf>), implies that ux,m = (7 — XA(¡,)~1u.

Finally, we prove that D(A^) is dense in Ll(RN).   To this end it suffices to

show that for any u e Xm, m > 1,  (7 — AA^)-1^ converges in Ll(RN) to u as

A | 0. Since (2.1), (2.2) and (2) (p = 1) remain true with Jx,h,u and Cm replaced by

(7 — AA</,)-1it and supiri<Tn <j>'(r), respectively, we can prove by a similar method

to that used in the proof of Lemma 2.1 that the set {(7 — AA^)_1u:A > 0} is

precompact in Ll(RN).   Therefore for any sequence {An}^L, such that A„ | 0,

the sequence {(/ — XnA(p)~1u}<£L1 contains a subsequence convergent to some w

in L1(RN). The equality (2.5) with u^m replaced with (7 — XA(¡))~lu implies that

(I -pA)~l(w-u) =0for p >0.    Q.E.D.

3. Properties of {S<¿,(i):í > 0}. In the preceding section we have proved

that A^ generates a semigroup {S<p(t):t > 0} in the sense of Crandall-Liggett [7,

Theorem I]. The purpose of this section is to study further properties of {5<^(í): t >

0} and to give the proof of Theorem. With the aid of the Brezis-Pazy's convergence

theorem, the following can be obtained from Proposition 2.3.

PROPOSITION 3.1. For every t > 0, S<f,(t) maps Xm into itself for any m > 1

and satisfies, for every u,v e Xm,

|]S*(t)u-S*(tHi<||u-t;|li.     ||S*(0u||P < IMIp        (p=l,oo)

and

(3.1) Cl¿£]u-*S4t)u   mL1(RN)

as h i 0 uniformly on every bounded subinterval of [0, oo).

LEMMA 3.2. For every m > 1, {S¿(t):t > 0} satisfies the condition (C)m with

Cm = sup,r|<mç/>'(r).

PROOF. In view of (3.1) we see that S<¡,(t)uy = (S<¡,(t)u)y for y e RN since

Ch,mUy — (Ch,mU)y It remains to show that, for u e Xm,

(3.2) /     sgn(u)-t-1(S4t)-I)uf(x)dx<   sup ¿(r) ■ \\u\\x WAfW^.
JRN \r\<m

Since G£m -1 = YJk=o^h,m - 7)G¿m for any positive integer n, we have, by

Lemma 2.2,

/    sgn(U) • (Clm - I)uf(x)dx < nh sup 0'(r) • ||U||, \\Af\U
J RN \r\<m

Putting n = [t/h] and letting h | 0 yields (3.2).    Q.E.D.

LEMMA 3.3.   For every u e An, /0 4>(S,p(r)u) dr belongs to D(A), and for all

t >0,

(3.3) S4t)u-u = A      ¿(S0(r)u) dr    in L1(RN).
Jo



TROTTER'S PRODUCT FORMULA 513

PROOF.   Let u e Xm for an arbitrary m > 1 and let Uh be, for h > 0, the

solution in C([0, oo); Xm) of

u(t) = e-t/hu + h'1 [ e-(t-r)/hCh,mu(r) dr,        t > 0.

Jo

It is easy to verify that Uh(t) is differentiable in t in the topology of L1(RN) and

satisfies

(3.4) uh(t)-u = L-1(T(L)-I) f 4>(uh(r))dr,        Í > 0.
Jo

By a well-known convergence theorem (see e.g. [5, Theorem 3.1]), (2.3) implies that

(3.5) uh(t) -> S0(r>   inL1^")

as h I 0 uniformly on every bounded subinterval of [0,oo).   From (3.4) it follows

that for any p > 0,

(I - pL~\T(L) - I))~l(uh(t) - u)

= p~l{(I - pL'\T(L) - I))~l - 1} f <t>(uh(r)) dr,
Jo

which together with (2.4) and (3.5) implies (3.3).    Q.E.D.

LEMMA 3.4.   Under the assumptions of Theorem, the family {S,¡>1 (t) ■ ■ ■ Scf,k(t):

í  >  0}  satisfies the condition (C)m with Cm  = X^ = i suP|r|<m <t>'j(r) for every

m > 1.

PROOF. The validity of (i)-(iii) of (C)TO is clear from Lemma 3.2. Since

fc

50I (t) ■ ■ ■ S^ (t)-I = J2(S^ (0 - /)S«,+I (t) ...S* (t),
i=i

k applications of (3.2) yields

/     sgn(w) ■ (S4>1 (t) ■ ■ ■ S<t,k (t) - I)uf(x) dx
Jr"

<tJ2 «up 0;(r)-Hi||A/Hoo.    Q.E.D.
j=1 kl<m

PROOF OF THEOREM. As was mentioned in the first section, we have only to

show (1.3). Let u e Xn. Then, u e Xm for some m > 1. By Lemma 3.4, for any

sequence {hn}™=1 such that hn J. 0, the sequence {jfc u}^=1, where

4A = (/-A/l-1(S^(M---^(/i)-7))-1

for h = hn, contains a subsequence convergent to some ux in L1(RN). By Lemma

3.3 it holds that, for h > 0,

A-ViN - «) = h-^S^ (h)-- ¿y,(/i) - I)j£u
k

= h-1 J2(s*Ah) - i)s*i+Ah) ■ ■ ■ S^k(h)Jtu
(3.6)

= A-¿/i"1 /   cj)j(S<t>}(r)Stj + 1(h)---S<í>k(h)j£u)dr.
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Since A is closed and ||ua||oo < llulloo, (3-6) implies that

k

X~l(ux -u) = A- ^4>0(ux) = A^ux,

3 = 1

and hence ux = (I — AA^)_1u.    Q.E.D.

Quite similarly, with the aid of Lemma 2.1 we can also obtain the following

formula under the assumptions of Theorem:

{k'^S^kh) + ■■■ + S<,k{kh))}Wu -» S4t)u    in Ll(RN)

as h I 0 for u e Ll(RN) n L°°(RN), uniformly on every bounded subinterval

of [0,oo). In fact, the family {k~1(S$l(kt) + ••■ + S$k(kt)):t > 0} satisfies the

condition (C)m with Gm = £y=1 supM<m <//(r).
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