COMPLETELY BOUNDED MAPS ON C^{*}-ALGEBRAS ${ }^{1}$

CHING-YUN SUEN

Abstract

In this paper we give a simpler proof of an extension theorem for completely bounded maps defined on subspaces of C^{*}-algebras, a new proof of a theorem of Wittstock [8, Satz 4.5], and a series of propositions by extending the techniques of $[\mathbf{7}]$ to work in the case of a C-bimodule action on the C^{*} algebras involved.

1. Introduction. A question of Kadison [5] asks whether or not every bounded homomorphism from a C^{*}-algebra into the algebra of operators on a Hilbert space $\mathcal{L}(H)$ is similar to a *-homomorphism. Hadwin $[\mathbf{3}]$ has shown that a bounded unital homomorphism from a C^{*}-algebra into $\mathcal{L}(H)$ is similar to a $*$-homomorphism if and only if the homomorphism belongs to the span of the completely positive maps. Wittstock [8] and Paulsen [6] proved that the span of the completely positive maps from a C^{*}-algebra into an injective C^{*}-algebra is identical with the set of completely bounded maps. Together these two results prove that a bounded unital homomorphism from a C^{*}-algebra into $\mathcal{L}(H)$ is similar to a $*$-homomorphism if and only if it is completely bounded. Recently, Paulsen $[\boldsymbol{7}]$ proved that a bounded linear operator on a Hilbert space is similar to a contraction if and only if it is completely polynomially bounded. This gives a partial answer to problem 6 of [4]. Therefore, the set of completely bounded maps between C^{*}-algebras has been shown to play an important role in the study of several problems in C^{*}-algebras and operator theory.
2. Completely bounded maps. In this section we obtain an extension theorem and a new proof of a theorem of Wittstock for completely bounded maps.

Let A and B be C^{*}-algebras. By a subspace of A we mean a (not necessarily closed) complex linear subspace. Let M_{n} denote the C^{*}-algebra of complex $n \times n$ matrices. If \mathcal{L} is a subspace of A and $L: \mathcal{L} \rightarrow B$ is a linear map, then we set $L_{n}=L \otimes I_{n}: \mathcal{L} \otimes M_{n} \rightarrow B \otimes M_{n}$ by

$$
L_{n}(a \otimes b)=L(a) \otimes b .
$$

The map L is positive if $L(a) \geq 0$ whenever $a \in \mathcal{L}$ and $a \geq 0$, and is completely positive if L_{n} is positive for all $n=1,2, \ldots . L$ is completely bounded if $\sup _{n}\left\|L_{n}\right\|$ is finite, and we let

$$
\|L\|_{\mathrm{cb}}=\sup _{n}\left\|L_{n}\right\| .
$$

If $\|L\|_{\mathrm{cb}} \leq 1$, then L is called a complete contraction (or completely contractive). If $\mathcal{L} \subseteq A$ is a linear subspace with $\mathcal{L}=\mathcal{L}^{*}$ and $L: \mathcal{L} \rightarrow B$ is linear, then we define

[^0]a linear map $L^{*}: \mathcal{L} \rightarrow B$ by
$$
L^{*}(a)=L\left(a^{*}\right)^{*} .
$$

Let $\operatorname{Re}(L): \mathcal{L} \rightarrow B$ and $\operatorname{Im}(L): \mathcal{L} \rightarrow B$ be defined by

$$
\operatorname{Re}(L)=\frac{1}{2}\left(L+L^{*}\right) \quad \text { and } \quad \operatorname{Im}(L)=\frac{1}{2 i}\left(L-L^{*}\right)
$$

so that

$$
L=\operatorname{Re}(L)+i \operatorname{Im}(L)
$$

with $\operatorname{Re}(L)^{*}=\operatorname{Re}(L), \operatorname{Im}(L)^{*}=\operatorname{Im}(L)$ and $\operatorname{Im}(L)=\operatorname{Re}(-i L)$.
Definition 2.1. Let A, B, and C be unital C^{*}-algebras. Let C be a subalgebra of A and B with $I_{C}=I_{A}$ and $I_{C}=I_{B}$. Let $\phi: A \rightarrow B$ be a linear map. We call ϕ a C-bihomomorphism [8, Satz 4.2] provided

$$
\phi\left(c_{1} a c_{2}\right)=c_{1} \phi(a) c_{2}, \quad \text { for all } c_{1}, c_{2} \in C .
$$

Definition 2.2. Let A and B be C^{*}-algebras, and let $\psi_{i}: A \rightarrow B$ be completely bounded maps for $i=1,2$. We define $\psi_{1} \leq \psi_{2}$ provided $\psi_{2}-\psi_{1}$ is completely positive.

A C^{*}-algebra A is called injective if it has Arveson's extension property. We know that a C^{*}-algebra A is injective if and only if there is a completely positive projection of $\mathcal{L}(H)$ onto $A[\mathbf{2}]$. Hence $A \otimes M_{n}$ is injective, for $n=1,2, \ldots$, when A is injective.

Lemma 2.3. Let A, B and C be unital C^{*}-algebras. Let C be a subalgebra of A and B with $I_{C}=I_{A}$ and $I_{C}=I_{B}$, and let $\phi_{i}: A \rightarrow B$ be C-bihomomorphisms for $i=1,2,3,4$. If the map $\psi: A \otimes M_{2} \rightarrow B \otimes M_{2}$, defined by

$$
\psi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\left(\begin{array}{ll}
\phi_{1}(a) & \phi_{2}(b) \\
\phi_{3}(c) & \phi_{4}(d)
\end{array}\right)
$$

is completely positive, then:
(1) ψ is a $C \oplus C$-bihomomorphism;
(2) ϕ_{1} and ϕ_{4} are completely positive C-bihomomorphisms;
(3) $\phi_{2}=\phi_{3}^{*}$ is a completely bounded C-bihomomorphism;
(4) $\pm \operatorname{Re} \lambda \phi \leq\left(\phi_{1}+\phi_{4}\right) / 2$ for all complex numbers λ with $|\lambda|=1$;

$$
\begin{align*}
& \|\psi\|_{\mathrm{cb}}\left(\phi_{1}\right)_{n}\left(\left(a_{i j}\right)\left(a_{i j}\right)^{*}\right) \geq\left(\left(\phi_{2}\right)_{n}\left(\left(a_{i j}\right)\right)\right)\left(\left(\phi_{2}\right)_{n}\left(\left(a_{i j}\right)\right)\right)^{*}, \tag{5}\\
& \|\psi\|_{\mathrm{cb}}\left(\phi_{4}\right)_{n}\left(\left(a_{i j}\right)^{*}\left(a_{i j}\right)\right) \geq\left(\left(\phi_{2}\right)_{n}\left(\left(a_{i j}\right)\right)\right)^{*}\left(\left(\phi_{2}\right)_{n}\left(\left(a_{i j}\right)\right)\right)
\end{align*}
$$

for $\left(a_{i j}\right) \in A \otimes M_{n}$ and $n=1,2,3, \ldots$.
Proof. Since C is a subalgebra of A, we can make $A \otimes M_{2}$ a $C \oplus C$-bimodule by identifying

$$
c_{1} \oplus c_{2}=\left(\begin{array}{cc}
c_{1} & 0 \\
0 & c_{2}
\end{array}\right) \quad \text { for } c_{1}, c_{2} \in C
$$

It is easy to see that (1) holds. Observe that

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \psi\left(\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right)\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
\phi_{1}(a) & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \psi\left(\left(\begin{array}{cc}
a & a \\
a & a
\end{array}\right)\right)\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & \phi_{4}(a)
\end{array}\right)
$$

We know that ϕ_{1} and ϕ_{4} are completely positive C-bihomomorphisms. Thus (2) holds. Since

$$
\psi\left(\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right)\right)^{*}=\left(\psi\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right)\right)^{*}
$$

and

$$
\psi_{n}\left(\left(\begin{array}{cc}
0 & \left(b_{i j}\right) \\
0 & 0
\end{array}\right)\right)=\left(\begin{array}{cc}
0 & \left(\phi_{2}\right)_{n}\left(\left(b_{i j}\right) \cdot\right) \\
0 & 0
\end{array}\right)
$$

We have that

$$
\phi_{2}=\phi_{3}^{*} \quad \text { and } \quad\left\|\left(\phi_{2}\right)_{n}\left(\left(b_{i j}\right)\right)\right\| \leq\left\|\psi\left(I_{A \otimes M_{2}}\right)\right\|\left\|\left(b_{i j}\right)\right\|
$$

Thus (3) holds. Note that

$$
\begin{gathered}
\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\right)\left(\left(\begin{array}{cc}
\pm \lambda & 0 \\
0 & 1
\end{array}\right)\right) \psi\left(\left(\begin{array}{cc}
a & a \\
a & a
\end{array}\right)\right)\left(\left(\begin{array}{cc}
\pm \bar{\lambda} & 0 \\
0 & 1
\end{array}\right)\right)\left(\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\right) \\
=\left(\begin{array}{cc}
\phi_{1}(a)+\phi_{4}(a) \pm \lambda \phi_{2}(a) \pm\left(\lambda \phi_{2}\right)^{*}(a) & 0 \\
0 & 0
\end{array}\right)
\end{gathered}
$$

for all complex numbers λ with $|\lambda|=1$, so that $\pm \operatorname{Re} \lambda \phi_{2} \leq\left(\phi_{1}+\phi_{4}\right) / 2$. thus (4) holds. By the Schwarz inequality for completely positive maps, we have

$$
\left.\left.\begin{array}{rl}
\|\psi\|_{\mathrm{cb}} \psi_{n}\left(\left(\begin{array}{cc}
0 & \left(a_{i j}\right) \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \left(a_{i j}\right) \\
0 & 0
\end{array}\right)\right)^{*} \\
& =\|\psi\|_{\mathrm{cb}}\left(\begin{array}{cc}
\left(\phi_{1}\right)_{n}\left(\left(a_{i j}\right)\left(a_{i j}\right)^{*}\right) & 0 \\
0 & 0
\end{array}\right) \\
& \geq\left(\psi _ { n } \left(\left(\begin{array}{cc}
0 & \left(a_{i j}\right) \\
0 & 0
\end{array}\right)\right.\right.
\end{array}\right)\right)^{*} \psi_{n}\left(\left(\begin{array}{cc}
0 & \left(a_{i j}\right) \\
0 & 0
\end{array}\right)\right) .
$$

Similarly, we have the other inequality. Thus the lemma is proved. The following is new proof of a theorem of Wittstock [8, Satz 4.5]:

THEOREM 2.4. Let A, B, and C be unital C^{*}-algebras with B injective. Let C be a subalgebra of A and B with $I_{C}=I_{A}$ and $I_{C}=I_{B}$, let \mathcal{L} be a complex subspace of A with $c_{1} \mathcal{L} c_{2} \subseteq \mathcal{L}$ for all $c_{1}, c_{2} \in C$, and let $L: \mathcal{L} \rightarrow B$ be a completely bounded C-bihomomorphism. Then there exists a completely bounded extension $L: A \rightarrow B$ of L which is a C-bihomomorphism with $\|\tilde{L}\|_{\mathrm{cb}}=\|L\|_{\mathrm{cb}}$.

Proof. Without loss of generality, we may assume that $\|L\|_{\mathrm{cb}}=1$. Let

$$
S=\left\{\left(\begin{array}{cc}
c_{1} & a \\
b^{*} & c_{2}
\end{array}\right): c_{1}, c_{2} \in C \text { and } a, b \in \mathcal{L}\right\},
$$

and define $\phi: S \rightarrow B \otimes M_{2}$ by

$$
\phi\left(\left(\begin{array}{cc}
c_{1} & a \\
b^{*} & c_{2}
\end{array}\right)\right)=\left(\begin{array}{cc}
c_{1} & L(a) \\
L(b)^{*} & c_{2}
\end{array}\right) .
$$

Let ε be a fixed positive number and

$$
\left(\begin{array}{cc}
H & E \\
E^{*} & K
\end{array}\right)
$$

a positive element in $S \otimes M_{n}$. Then
$\left(\begin{array}{cc}(H+\varepsilon)^{-1 / 2} & 0 \\ 0 & (K+\varepsilon)^{-1 / 2}\end{array}\right)\left(\begin{array}{cc}H+\varepsilon & E \\ E^{*} & K+\varepsilon\end{array}\right)\left(\begin{array}{cc}(H+\varepsilon)^{-1 / 2} & 0 \\ 0 & (K+\varepsilon)^{-1 / 2}\end{array}\right) \geq 0$.
By [2, p. 162], we have

$$
\left\|L_{n}\left((H+\varepsilon)^{-1 / 2} E(K+\varepsilon)^{-1 / 2}\right)\right\| \leq\left\|(H+\varepsilon)^{-1 / 2} E(K+\varepsilon)^{-1 / 2}\right\| \leq 1
$$

Thus

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & L_{n}\left((H+\varepsilon)^{-1 / 2} E(K+\varepsilon)^{-1 / 2}\right) \\
\left(L_{n}\left((H+\varepsilon)^{-1 / 2} E(K+\varepsilon)^{-1 / 2}\right)\right)^{*} & 1
\end{array}\right) \\
& \quad=\left(\begin{array}{cc}
1 & (H+\varepsilon)^{-1 / 2} L_{n}(E)(K+\varepsilon)^{-1 / 2} \\
(K+\varepsilon)^{-1 / 2} L_{n}(E)^{*}(H+\varepsilon)^{-1 / 2} & 1
\end{array}\right) \\
& \quad \geq 0
\end{aligned}
$$

Hence

$$
\left(\begin{array}{cc}
H+\varepsilon & L_{n}(E) \\
L_{n}(E)^{*} & K+\varepsilon
\end{array}\right) \geq 0
$$

Since ε can be arbitrary small, we have

$$
\left(\begin{array}{cc}
H & L_{n}(E) \\
L_{n}(E)^{*} & K
\end{array}\right) \geq 0 .
$$

Thus the map ϕ is completely positive. Since $B \otimes M_{2}$ is injective, we know that ϕ has an extension $\tilde{\phi}: A \otimes M_{2} \rightarrow B \otimes M_{2}$ which is a unital completely positive map. Let E^{\prime} be a Hermitian element in $\left(A \otimes M_{2}\right) \otimes M_{n}$ and H^{\prime} a Hermitian element in $(C \oplus C) \otimes M_{n}$ with $H^{\prime} \pm E^{\prime} \geq 0$. Since $A \otimes M_{2}$ is a $C \oplus C$-bimodule, this implies that

$$
\tilde{\phi}_{n}\left(H^{\prime} \pm E^{\prime}\right)=H^{\prime} \pm \tilde{\phi}_{n}\left(E^{\prime}\right) \geq 0
$$

By [8, Satz 4.2], $\tilde{\phi}$ is a $C \oplus C$-bihomomorphism. We now define $\tilde{L}: A \rightarrow B$ by setting $\tilde{L}(a)$ to be the (1,2)-entry of

$$
\tilde{\phi}\left(\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right)\right)
$$

For $a \in \mathcal{L}$ we have

$$
\tilde{\phi}\left(\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right)\right)=\left(\begin{array}{cc}
0 & L(a) \\
0 & 0
\end{array}\right)
$$

Hence \tilde{L} does extend L. Furthermore, since $\tilde{\phi}$ is a unital completely positive map and

$$
\begin{aligned}
\left\|\tilde{L}_{n}\left(\left(a_{i j}\right)\right)\right\| & \leq\left\|\left(\begin{array}{cc}
* & \tilde{L}_{n}\left(\left(a_{i j}\right)\right) \\
* & *
\end{array}\right)\right\|=\left\|\tilde{\phi}_{n}\left(\left(\begin{array}{cc}
0 & \left(a_{i j}\right) \\
0 & 0
\end{array}\right)\right)\right\| \\
& \leq\|\tilde{\phi}\|\left\|\left(a_{i j}\right)\right\|,
\end{aligned}
$$

we obtain

$$
\left\|\tilde{L}_{n}\right\| \leq 1
$$

Hence

$$
\|\tilde{L}\|_{\mathrm{cb}}=\|L\|_{\mathrm{cb}}
$$

Finally, it is easy to see that \tilde{L} is a C-bihomomorphism. Thus the theorem is proved.

Theorem 2.5. Let A, B, and C be unital C^{*}-algebras with B injective. Let C be a subalgebra of A and B with $I_{C}=I_{A}$ and $I_{C}=I_{B}$, and let $L: A \rightarrow B$ be a nonzero completely bounded C-bihomomorphism. Then there exist unital completely positive C-bihomomorphisms $\phi_{i}: A \rightarrow B$, for $i=1,2$, such that the map $\psi: A \otimes$ $M_{2} \rightarrow B \otimes M_{2}$, defined by

$$
\psi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\left(\begin{array}{cc}
\|L\|_{\mathrm{cb}} \phi_{1}(a) & L(b) \\
L^{*}(c) & \|L\|_{\mathrm{cb}} \phi_{2}(d)
\end{array}\right)
$$

is a completely positive $C \oplus C$-bihomomorphism.
PROOF. Let

$$
S=\left\{\left(\begin{array}{cc}
c_{1} & a \\
b^{*} & c_{2}
\end{array}\right): c_{1}, c_{2} \in C \text { and } a, b \in A\right\}
$$

and define $\phi: S \rightarrow B \otimes M_{2}$ by

$$
\phi\left(\left(\begin{array}{cc}
c_{1} & a \\
b^{*} & c_{2}
\end{array}\right)\right)=\left(\begin{array}{cc}
c_{1} & \left(\frac{L}{\|L\|_{\mathrm{cb}}}\right)(a) \\
\left(\frac{L}{\|L\|_{\mathrm{cb}}}\right)(b)^{*} & c_{2}
\end{array}\right)
$$

As in the proof of Theorem 2.4, we may extend ϕ to be a unital completely positive $C \oplus C$-bihomomorphism $\tilde{\phi}$ on all of $A \otimes M_{2}$. Let $b, c^{*} \in A$. We know that

$$
\left(\begin{array}{cc}
0 & b \\
c^{*} & 0
\end{array}\right) \in S
$$

and

$$
\phi\left(\left(\begin{array}{cc}
0 & b \\
c & 0
\end{array}\right)\right)=\left(\begin{array}{cc}
0 & \left(\frac{L}{\|L\|_{\mathrm{cb}}}\right)(a) \\
\left(\frac{L}{\|L\|_{\mathrm{cb}}}\right)^{*}(c) & 0
\end{array}\right)
$$

Let a^{\prime} be a positive element in A with $I_{A} \geq a^{\prime}$. Then

$$
0 \leq \tilde{\phi}\left(\left(\begin{array}{cc}
a^{\prime} & 0 \\
0 & 0
\end{array}\right)\right) \leq \tilde{\phi}\left(\left(\begin{array}{cc}
I_{c} & 0 \\
0 & 0
\end{array}\right)\right)=\left(\begin{array}{cc}
I_{c} & 0 \\
0 & 0
\end{array}\right)
$$

Let

$$
\tilde{\phi}\left(\left(\begin{array}{cc}
a^{\prime} & 0 \\
0 & 0
\end{array}\right)\right)=\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) .
$$

Then

$$
0 \leq\left(\begin{array}{cc}
p & q \\
r & s
\end{array}\right) \leq\left(\begin{array}{cc}
I_{c} & 0 \\
0 & 0
\end{array}\right)
$$

which implies $q=r=s=0$. Thus

$$
\tilde{\phi}\left(\left(\begin{array}{cc}
a^{\prime} & 0 \\
0 & 0
\end{array}\right)\right)=\left(\begin{array}{ll}
* & 0 \\
0 & 0
\end{array}\right)
$$

Since each element a in A is a finite linear combination of positive elements in A, we have

$$
\tilde{\phi}\left(\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)\right)=\left(\begin{array}{ll}
* & 0 \\
0 & 0
\end{array}\right)
$$

Similarly,

$$
\tilde{\phi}\left(\left(\begin{array}{ll}
0 & 0 \\
0 & a
\end{array}\right)\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & *
\end{array}\right)
$$

Now we can define

$$
\tilde{\phi}\left(\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)\right)=\left(\begin{array}{cc}
\phi_{1}(a) & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad \tilde{\phi}\left(\left(\begin{array}{cc}
0 & 0 \\
0 & a
\end{array}\right)\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & \phi_{2}(a)
\end{array}\right)
$$

Then ϕ_{1} and ϕ_{2} are unital completely positive maps. Thus

$$
\tilde{\phi}\left(\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\right)=\left(\begin{array}{cc}
\phi_{1}(a) & \frac{L}{\|L\|_{\mathrm{cb}}}(b) \\
\left(\frac{L}{\|L\|_{\mathrm{cb}}}\right)^{*}(c) & \phi_{2}(d)
\end{array}\right)
$$

Let $\psi=\|L\|_{\mathrm{cb}} \tilde{\phi}$. It is easy to see that ϕ_{1} and ϕ_{2} are C-bihomomorphisms. Thus the theorem is proved.

Using Theorem 2.5, we know that $\operatorname{Re} L$ and $\operatorname{Im} L$ are dominated by the same completely positive map in the following corollary.

Corollary 2.6. Let A, B and C be unital C^{*}-algebras with B injective. Let C be a subalgebra of A and B with $I_{C}=I_{A}$ and $I_{C}=I_{B}$, and let $L: A \rightarrow B$ be a completely bounded C-bihomomorphism. Then there exist unital completely positive C-bihomomorphisms $\phi_{i}: A \rightarrow B$ for $i=1,2$, such that
(1) $\pm \operatorname{Re} \lambda L \leq\|L\|_{\mathrm{cb}}\left(\phi_{1}+\phi_{2}\right) / 2$ for all complex numbers λ with $|\lambda|=1$, and (2)

$$
\begin{aligned}
& \|L\|_{\mathrm{cb}}^{2}\left(\phi_{1}\right)_{n}\left(\left(a_{i j}\right)\left(a_{i j}\right)^{*}\right) \geq\left(L_{n}\left(\left(a_{i j}\right)\right)\right)\left(L_{n}\left(\left(a_{i j}\right)\right)\right)^{*} \\
& \|L\|_{\mathrm{cb}}^{2}\left(\phi_{2}\right)_{n}\left(\left(a_{i j}\right)^{*}\left(a_{i j}\right)\right) \geq\left(L_{n}\left(\left(a_{i j}\right)\right)\right)^{*}\left(L_{n}\left(\left(a_{i j}\right)\right)\right),
\end{aligned}
$$

for $\left(a_{i j}\right) \in A \otimes M_{n}$ and $n=1,2, \ldots$
Proof. By Theorem 2.5 and Lemma 2.3, we have (1) and (2).

References

1. W. B. Arveson, Subalgebra of C^{*} algebras, Acta Math. 123 (1969), 141-224.
2. M. D. Choi and E. G. Effros, Infective and operator spaces, J. Funct. Anal. 24 (1977), 156209.
3. D. W. Hadwin, Dilations and Hahn decompositions for linear maps, Canad. J. Math. 33 (1981), 826-839.
4. P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), $887-933$.
5. R. V. Kadison, On the orthogonalization of operator representations, Amer. J. Math. 77 (1955), 600-620.
6. V. I. Paulsen, Completely bounded maps on C^{*} algebras and invariant operator ranges, Proc. Amer. Math. Soc. 86 (1982), 91-96.
7.__, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), 117.
7. G. Wittstock, Ein operatorwertiger Hahn-Banach Satz, J. Funct. Anal. 40 (1981), 127150.
8. \qquad Extension of completely bounded C^{*} module homomorphisms, preprint.

Department of Mathematics, Texas A\&M University, College Station, TEXAS 77843

[^0]: Received by the editors November 28, 1983 and, in revised form, February 27, 1984.
 1980 Mathematics Subject Classification. Primary 46L05.
 ${ }^{1}$ This contains part of the author's Ph.D. thesis written at the University of Houston under the direction of Professor Vern Paulsen.

