\aleph_0 -POINT COMPACTIFICATIONS OF LOCALLY COMPACT SPACES AND PRODUCT SPACES

TAKASHI KIMURA

ABSTRACT. We give necessary and sufficient conditions for a locally compact space to have a compactification with countably infinite remainder. We also characterize the product space of two locally compact spaces having such a compactification.

1. Introduction. All spaces are assumed to be completely regular and T_1 , and we denote the set of positive integers by N.

A compactification αX of a space X is called an \aleph_0 -point compactification (we say X has an \aleph_0 CF) if the remainder $\alpha X - X$ has cardinality \aleph_0 .

We consider some characterizations of a locally compact space with an \aleph_0 CF. The first to characterize such spaces was Magill [7]. In §2 we give a characterization analogous to a theorem of Magill [6] concerning the n-point compactification.

The notion of singular set was introduced by Cain [1], and many authors (see for example [2-4]) have investigated the relationships between compactifications and singular sets. In §3, as a corollary of our theorem, we characterize a locally compact space having an \aleph_0 CF by singular sets.

Recently, Hoshina [5] characterized a product space of two paracompact spaces having a compactification with countable remainder. Here countable means finite or infinite countable. In $\S 4$, as an application of our theorem, we characterize a product space of two locally compact spaces having an \aleph_0 CF.

I wish to thank Professor T. Hoshina for his helpful suggestions, especially for the simple proof of Theorem 1.

2. \aleph_0 -point compactifications of locally compact spaces. We begin with

LEMMA 1. Let A be a countably infinite subset of a space X. Then there are a countably infinite subset $B = \{b_i | i \in N\}$ of A and a sequence $\{U_i | i \in N\}$ of pairwise disjoint open subsets of X such that $b_i \in U_i$ and $\operatorname{Bd}_X U_i \cap A = \emptyset$ for each $i \in N$.

PROOF. Since X is regular, there are a point $b_1 \in A$ and an open subset V_1 of X such that $b_1 \notin \operatorname{Cl}_X V_1$ and $|V_1 \cap A| = \aleph_0$. Similarly, there are a point $b_2 \in V_1 \cap A$ and an open subset V_2 of V_1 such that $b_2 \notin \operatorname{Cl}_X V_2$ and $|V_2 \cap A| = \aleph_0$. Continuing in this manner, we obtain a subset $B = \{b_i | i \in N\}$ of A and a sequence $\{V_i | i \in N\}$ of open subsets of X. Now let $W_i = V_{i-1} - \operatorname{Cl}_X V_i$ for each $i \in N$, where $V_0 = X$. By complete regularity of X, there is a continuous mapping $f_i \colon X \to I = [0,1]$ such that $f_i(b_i) = 0$ and $f_i(X - W_i) = \{1\}$. Then there is a real number $r_i \in I$ such that

Received by the editors April 22, 1983 and, in revised form, February 2, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54D35, 54D40.

Key words and phrases. ℵ0-point compactification, singular set, Freudenthal compactification, rim-compact.

 $r_i \notin f_i(A)$. Let $U_i = f_i^{-1}([0, r_i))$. Since $\mathrm{Bd}_X U_i \subset f_i^{-1}(r_i)$, we have $\mathrm{Bd}_X U_i \cap A = \emptyset$. Hence $\{U_i | i \in N\}$ has all the required properties.

An open set U of a space X is γ -open if $\operatorname{Bd}_X U$ is compact. A space X is called rim-compact if it has a base consisting of γ -open sets. Clearly, locally compact spaces are rim-compact. The following lemma, proved by Terada [8, Lemma 3], is useful.

LEMMA 2. Let X be a rim-compact space and γX the Freudenthal compactification of X. If U is γ -open in X, then

$$\operatorname{Cl}_{\gamma X} U \cap (\gamma X - X) = (\gamma X - \operatorname{Cl}_{\gamma X} (X - U)) \cap (\gamma X - X),$$

 $(\gamma X - \operatorname{Cl}_{\gamma X} (X - U)) \cup (\gamma X - \operatorname{Cl}_{\gamma X} U) \supset \gamma X - X,$ and
 $(\gamma X - \operatorname{Cl}_{\gamma X} (X - U)) \cap (\gamma X - \operatorname{Cl}_{\gamma X} U) = \emptyset$

hold.

We are now in a position to establish one of our main theorems.

THEOREM 1. A locally compact space X has an \aleph_0 CF if and only if there is a sequence $\{U_i|i\in N\}$ of pairwise disjoint γ -open subsets of X each with noncompact closure.

PROOF. Let Y be an \aleph_0 CF of X. By Lemma 1 there are a countably infinite subset $\{a_i|i\in N\}$ of Y-X and a sequence $\{W_i|i\in N\}$ of pairwise disjoint open subsets of Y such that $a_i\in W_i$ and $\mathrm{Bd}_YW_i\cap (Y-X)=\emptyset$ for each $i\in N$. Now let $U_i=W_i\cap X$ for each $i\in N$. Then Cl_XU_i is noncompact. Since $\mathrm{Bd}_XU_i\subset \mathrm{Bd}_YW_i\subset X$, Bd_XU_i is compact. Hence $\{U_i|i\in N\}$ has all the required properties.

Conversely, let $\{U_i|i\in N\}$ be a family of pairwise disjoint γ -open subsets of X each with noncompact closure. Let γX be the Freudenthal compactification of X, $F_i = \operatorname{Cl}_{\gamma X} U_i \cap (\gamma X - X)$ and $F_0 = (\gamma X - X) - \bigcup \{F_i|i\in N\}$. Then $\mathcal{F} = \{F_i|i=0,1,2,\ldots\} \cup \{\{x\}|x\in X\}$ is an upper semicontinuous decomposition of γX .

It is obvious that \mathcal{F} is a decomposition of γX . Hence it suffices to show the upper semicontinuity of \mathcal{F} .

Case 1. If $x \in X$, then for any open neighborhood U of x in $\gamma X, W = U \cap X$ is an open neighborhood of x in γX . And for any element F' of \mathcal{F} such that $F' \cap W \neq \emptyset$, we have $F' \subset W \subset U$.

Case 2. Let F be an element of $\{F_i|i\in N\}$ and U an open subset of γX containing F. By Lemma 2, F is open in $\gamma X-X$. Thus there is an open subset V of γX such that $F=V\cap(\gamma X-X)$. Let us set $W=U\cap V$. Then for any element F' of \mathcal{F} such that $F'\cap W\neq\emptyset$, we have $F'\subset W\subset U$. Clearly, $F\subset W\subset U$.

Case 3. Let U be an open subset of γX containing F_0 . Let \mathcal{F}' be the collection of all elements of $\{F_i|i\in N\}$ not contained in U. Since $\gamma X-X$ is compact and F_i is open in $\gamma X-X$, \mathcal{F}' is finite. Thus $W=U-\bigcup\{F|F\in\mathcal{F}'\}$ is open in γX . For any element F' of \mathcal{F} such that $F'\cap W\neq\varnothing$, we have $F'\subset W\subset U$. Clearly, $F_0\subset W\subset U$.

Hence \mathcal{F} is an upper semicontinuous decomposition of γX . Let $Y = \gamma X/\mathcal{F}$ be the quotient space of γX determined by the upper semicontinuous decomposition \mathcal{F} . Then Y is an \aleph_0 CF of X. Theorem 1 is proved.

3. \aleph_0 -point compactifications and singular sets. Cain [1], [2] defined the singular set as follows: If $f\colon X\to Y$ is a continuous mapping of one locally compact space onto another, then the singular set S(f) is the collection of all points $p\in Y$ such that in every neighborhood of p there is a compact set with noncompact inverse image. As a corollary of his main theorem [2, Theorem 3.1], Cain proved that a connected locally compact space X has an n-point compactification if and only if there is a continuous mapping f of X onto a compact space Y so that S(f) consists of exactly n points [2, Theorem 3.2]. Cain, Chandler and Faulkner [3] strengthened this theorem, so it remains true without connectedness. Chandler and Tzung [4] defined the remainder induced by f to be

$$C(f) = \bigcap \{ \operatorname{Cl}_Y f(X - F) | F \text{ is a compact subset of } X \},$$

and proved that (whenever Y is compact) there is a compactification αX with $\alpha X-X$ homeomorphic to C(f). Their "remainder induced by f" is the same as a singular set [3]. Thus the "if" part of Cain's theorem holds for any cardinality of S(f). However, for every compactification αX there need not be a singular set S(f) with S(f) homeomorphic to $\alpha X-X$. Indeed, the Stone-Čech compactification βN of a countably infinite discrete space N has no singular set S(f), with S(f) homeomorphic to $\beta N-N$, because the cardinality of S(f) is at most countable. As a corollary of Theorem 1, we can prove the following result, which is analogous to Cain's theorem.

THEOREM 2. A locally compact space X has an \aleph_0 CF if and only if there is a continuous mapping f of X onto a compact space Y such that S(f) has cardinality \aleph_0 .

PROOF. It suffices to prove the "only if" part. Suppose X has an \aleph_0 CF. By Theorem 1 there is a sequence $\{U_i|i\in N\}$ of pairwise disjoint γ -open subsets of X each with noncompact closure. For each $i=2,3,\ldots$, choose a point $x_i\in U_i$ and put $F_i = (\operatorname{Cl}_{\gamma X} U_i \cap (\gamma X - X)) \cup \{x_i\}, \text{ where } \gamma X \text{ is the Freudenthal compactification}$ of X. Let $F_1 = \gamma X - \bigcup \{\gamma X - \operatorname{Cl}_{\gamma X}(X - U_i) | i = 2, 3, \ldots \}$. Let $\mathcal{F} = \{F_i | i \in \mathcal{F}_i | i \in \mathcal{F}_i \}$ $N \cup \{\{x\} | x \in \gamma X - \bigcup \{F_i | i \in N\}\}$. Then as in Theorem 1 we can prove that \mathcal{F} is an upper semicontinuous decomposition of γX . Thus $Y = \gamma X/\mathcal{F}$ is a compact Hausdorff space. Let $g: X \to \gamma X$ be an embedding and $q: \gamma X \to Y$ a quotient mapping. Then the composition $f = q \circ q$ is a continuous mapping of X onto Y. Let us set $\{a_i\} = q(F_i)$ for each $i \in N$ and $A = \{a_i | i \in N\}$. Then we have $q^{-1}(A) = \gamma X - \bigcup \{U_i - \{x_i\} | i = 2, 3, \ldots\}$. Since X is locally compact, it is open in γX . Thus $q^{-1}(A)$ is closed in γX . Since q is a quotient mapping, A is closed in Y. Then U = Y - A is open in Y, and for every compact subset K of U, $f^{-1}(K)$ is compact, because the restriction of $f: X \to Y$ to $U \subset Y$, $f_U: f^{-1}(U) \to U$, is a homeomorphism. Thus for every $y \in U$ we have $y \notin S(f)$. Next, for each a_i and any neighborhood V_i of a_i there is an open subset W_i such that $a_i \in W_i \subset \operatorname{Cl}_Y W_i \subset V_i$. Then $\operatorname{Cl}_Y W_i$ is compact but $f^{-1}(\operatorname{Cl}_Y W_i)$ is noncompact. Thus we have $a_i \in S(f)$. Hence S(f) has cardinality \aleph_0 . Theorem 2 is proved.

4. \aleph_0 -point compactifications of product spaces. Throughout this section we assume all spaces to be locally compact. From Theorem 1 it follows that the class of all spaces having an \aleph_0 CF is an inverse invariant of perfect mappings. Hence if X is compact and Y has an \aleph_0 CF, then $X \times Y$ also has an \aleph_0 CF. However,

this class is not an invariant of perfect mappings. Indeed, let $Z = \{0, 1, \frac{1}{2}, \frac{1}{3}, \ldots\}$, $X = Z \times R$ and Y = R, where R denotes the real line. The projection $p \colon X \to Y$ is perfect and X has an \aleph_0 CF. However, Y has no \aleph_0 CF. As for the existence of an \aleph_0 CF of a product space, we obtain the following theorem.

THEOREM 3. A product space $X \times Y$ has an \aleph_0 CF if and only if one of the following conditions is satisfied:

- (a) either X or Y has an infinite number of components and the other is non-compact;
 - (b) either X or Y has a compact component and the other has an \aleph_0 CF.

The following corollary is obvious.

COROLLARY. Let X and Y be connected. Then $X \times Y$ has an \aleph_0 CF if and only if either X or Y is compact and the other has an \aleph_0 CF.

To prove Theorem 3 we need some lemmas.

LEMMA 3. If X and Y are noncompact connected spaces, then $X \times Y$ has no $\aleph_0 CF$.

PROOF. Suppose $X \times Y$ has an \aleph_0 CF. By Theorem 1 there is a sequence $\{U_i|i\in N\}$ of pairwise disjoint γ -open subsets of $X\times Y$ each with noncompact closure. Let $p_X\colon X\times Y\to X$ and $p_Y\colon X\times Y\to Y$ be the projections, and let (i,j) be a pair of distinct positive integers. We set

$$A = p_X(\mathrm{Bd}_{X\times Y}U_i) \times p_Y(\mathrm{Bd}_{X\times Y}U_i).$$

Then A is compact. Since X and Y are noncompact and connected, $Z = X \times Y - A$ is connected. Since $\operatorname{Bd}_{X \times Y} U_i \subset A$, we have $\operatorname{Bd}_{X \times Y} U_i \cap Z = \emptyset$. Thus $Z = (U_i \cap Z) \cup ((X \times Y - \operatorname{Cl}_{X \times Y} U_i) \cap Z)$. Hence, $Z \subset \operatorname{Cl}_{X \times Y} U_i$ or $U_i \cap Z = \emptyset$. Suppose $Z \subset \operatorname{Cl}_{X \times Y} U_i$. Since $\operatorname{Cl}_{X \times Y} U_i \cap U_j = \emptyset$, we have $U_j \subset A$. This implies that $\operatorname{Cl}_{X \times Y} U_j$ is compact, and we have a contradiction. Suppose $U_i \cap Z = \emptyset$. Then $U_i \subset A$. This implies that $\operatorname{Cl}_{X \times Y} U_i$ is compact, and we have a contradiction. Hence $X \times Y$ has no $\aleph_0 \operatorname{CF}$.

LEMMA 4. If X is a compact connected space and Y has no \aleph_0 CF, then $X \times Y$ has no \aleph_0 CF.

PROOF. Suppose $X \times Y$ has an \aleph_0 CF. By Theorem 1 there is a sequence $\{U_i|i\in N\}$ of pairwise disjoint γ -open subsets of $X\times Y$ each with noncompact closure. Let $p_Y: X\times Y\to Y$ be the projection. Now we set $V_i=Y-p_Y(X\times Y-U_i)$. Since X is compact, p_Y is closed, therefore V_i is open in Y. Assume that $\operatorname{Cl}_Y V_i$ is compact. Then $A=X\times (\operatorname{Cl}_Y V_i\cup p_Y(\operatorname{Bd}_{X\times Y}U_i))$ is compact. Take a point $(x,y)\in U_i$. If $X\times \{y\}\subset U_i$, then $y\in V_i$. Thus $(x,y)\in A$. If $X\times \{y\}\not\subset U_i$, then $X\times \{y\}\cap \operatorname{Bd}_{X\times Y}U_i\neq \emptyset$, because $X\times \{y\}$ is connected. Thus $y\in p_Y(\operatorname{Bd}_{X\times Y}U_i)$, therefore $(x,y)\in A$. Hence $U_i\subset A$. However, this implies that $\operatorname{Cl}_{X\times Y}U_i$ is compact, and we have a contradiction. Thus $\operatorname{Cl}_Y V_i$ is noncompact. Clearly, for every pair of distinct positive integers i and j, $V_i\cap V_j=\emptyset$. Hence $\{V_i|i\in N\}$ satisfies the conditions of Theorem 1. Thus Y has an \aleph_0 CF; however, this is a contradiction.

By Theorem 1 it is easy to prove the following lemma.

LEMMA 5. Let X be a space which can be represented as the finite topological sum $X = X_1 \oplus X_2 \oplus \cdots \oplus X_n$. Then X has an \aleph_0 CF if and only if there is a positive integer $(1 \leq)$ i $(\leq n)$ such that X_i has an \aleph_0 CF.

PROOF OF THEOREM 3. If both X and Y have at most a finite number of components, then by Lemmas 3-5, condition (b) holds. If both X and Y have an infinite number of components, then (a) holds. Assume that X has an infinite number of components and Y has at most a finite number of components. Let $\{Y_1, Y_2, \ldots, Y_n\}$ be the collection of all components of Y. If Y is compact, then, by Lemma 5, there is a positive integer $(1 \le) i (\le n)$ such that $X \times Y_i$ has an \aleph_0 CF. By Lemma 4, X has an \aleph_0 CF. Hence (b) holds.

Conversely, let X and Y satisfy (a). Suppose X has an infinite number of components and Y is noncompact. Then there is a sequence $\{U_i|i\in N\}$ of pairwise disjoint open-and-closed subsets of X. Now let $V_i=U_i\times Y$ for each $i\in N$. Then $\{V_i|i\in N\}$ satisfies the conditions of Theorem 1. Hence $X\times Y$ has an \aleph_0 CF.

Next, let X and Y satisfy condition (b). Suppose X has a compact component X_0 and Y has an \aleph_0 CF. If X has an infinite number of components, then X and Y satisfy (a). Hence $X \times Y$ has an \aleph_0 CF. If X has at most a finite number of components, then X_0 is open-and-closed in X. As described in the first part of §4, $X_0 \times Y$ has an \aleph_0 CF. Since $X \times Y = (X_0 \times Y) \oplus ((X - X_0) \times Y)$, and by Lemma 5, $X \times Y$ has an \aleph_0 CF. Theorem 3 is proved.

REFERENCES

- 1. G. L. Cain, Jr., Compact and related mappings, Duke Math. J. 33 (1966), 639-645.
- Continuous preimages of spaces with finite compactifications, Canad. Math. Bull. 24 (1981), 177–180.
- G. L. Cain, Jr., R. E. Chandler and G. D. Faulkner, Singular sets and compactifications, Trans. Amer. Math. Soc. 268 (1981), 161-171.
- 4. R. E. Chandler and F.-C. Tzung, Remainders in Hausdorff compactifications, Proc. Amer. Math. Soc. 70 (1978), 196-202.
- T. Hoshina, Countable-points compactifications of product spaces, Tsukuba J. Math. 6 (1982), 231-236.
- 6. K. D. Magill, Jr., N-point compactifications, Amer. Math. Monthly 72 (1965), 1075-1081.
- 7. ____, Countable compactifications, Canad. J. Math. 18 (1966), 616-620.
- 8. T. Terada, On countable discrete compactifications, General Topology Appl. 7 (1977), 321-327.

DEPARTMENT OF MATHEMATICS, AICHI UNIVERSITY OF EDUCATION, IGAYA KARIYA, JAPAN 448

Current address: Institute of Mathematics, University of Tsukuba, Sakura-mura, Nihari-gun, Ibaraki, 305 Japan