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Ro-POINT COMPACTIFICATIONS
OF LOCALLY COMPACT SPACES AND PRODUCT SPACES

TAKASHI KIMURA

ABSTRACT. We give necessary and sufficient conditions for a locally compact
space to have a compactification with countably infinite remainder. We also
characterize the product space of two locally compact spaces having such a
compactification.

1. Introduction. All spaces are assumed to be completely regular and T}, and
we denote the set of positive integers by N.

A compactification aX of a space X is called an Rg-point compactification (we
say X has an RoCF) if the remainder aX — X has cardinality Ro.

We consider some characterizations of a locally compact space with an RoCF.
The first to characterize such spaces was Magill [7]. In §2 we give a characterization
analogous to a theorem of Magill [6] concerning the n-point compactification.

The notion of singular set was introduced by Cain [1], and many authors (see
for example [2-4]) have investigated the relationships between compactifications
and singular sets. In §3, as a corollary of our theorem, we characterize a locally
compact space having an RoCF by singular sets.

Recently, Hoshina [5] characterized a product space of two paracompact spaces
having a compactification with countable remainder. Here countable means finite
or infinite countable. In §4, as an application of our theorem, we characterize a
product space of two locally compact spaces having an RoCF.

I wish to thank Professor T. Hoshina for his helpful suggestions, especially for
the simple proof of Theorem 1.

2. Np-point compactifications of locally compact spaces. We begin with

LEMMA 1. Let A be a countably infinite subset of a space X. Then there are
a countably infinite subset B = {b;Jt € N} of A and a sequence {U;|i € N} of
patrwise disjoint open subsets of X such that b; € U; and BdxU;, N A = O for each
1€ N.

PROOF. Since X is regular, there are a point b; € A and an open subset V; of
X such that by ¢ ClxV; and |V} N A| = Xg. Similarly, there are a point b € V1N A
and an open subset V5 of V; such that by ¢ ClxV> and [Vo N A| = Rg. Continuing
in this manner, we obtain a subset B = {b;|i € N} of A and a sequence {V;|: € N}
of open subsets of X. Now let W; = V;_; — ClxV; for each : € N, where Vj = X.
By complete regularity of X, there is a continuous mapping f;: X — I = [0, 1] such
that f;(b;) = 0 and f;(X —W;) = {1}. Then there is a real number r; € I such that
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T ¢ fl(A) Let U; = fi—l([O, 7‘1‘)). Since Bdx U; C fi—l(n), we have BdxU;,NA =U.
Hence {U;|i € N} has all the required properties.

An open set U of a space X is y-open if BdxU is compact. A space X is called
rim-compact if it has a base consisting of v-open sets. Clearly, locally compact
spaces are rim-compact. The following lemma, proved by Terada [8, Lemma 3], is
useful.

LEMMA 2. Let X be a rim-compact space and vX the Freudenthal compactifi-
cation of X. If Uis y-open in X, then

ClxUN (71X — X) = (v X — CLx(X - U)) N (1 X - X),
(VX = CLx(X —U))U(1X —=CLxU) DX - X, and
(7YX = Clyx (X = U)) N (vX = ClyxU) =@

hold.

We are now in a position to establish one of our main theorems.

THEOREM 1. A locally compact space X has an RoCF if and only of there us a
sequence {U;|t € N} of pairwise disjoint ~y-open subsets of X each with noncompact
closure.

PROOF. Let Y be an RoCF of X. By Lemma 1 there are a countably infinite
subset {a;|i € N} of Y — X and a sequence {W;|t € N} of pairwise disjoint open
subsets of ¥ such that a; € W, and BdyW, N (Y — X) = & for each 1 € N. Now
let U; = W, N X for each ¢ € N. Then ClxU; is noncompact. Since BdxU; C
Bdy W, C X, BdxU; is compact. Hence {U;|¢ € N} has all the required properties.

Conversely, let {U;|t € N} be a family of pairwise disjoint v-open subsets of
X each with noncompact closure. Let vX be the Freudenthal compactification
of X, F; = ClyxU;N (7X — X) and Fy = (WX — X) — U{F;|t € N}. Then
F={Fli=0,1,2,...} U {{z}|z € X} is an upper semicontinuous decomposition
of vX.

It is obvious that ¥ is a decomposition of vX. Hence it suffices to show the
upper semicontinuity of 7.

Case 1. If z € X, then for any open neighborhood U of z in v X, W = UNX is an
open neighborhood of z in vX. And for any element F’ of ¥ such that F'NW # &,
we have F' CW C U.

Case 2. Let F be an element of {F;|¢ € N} and U an open subset of vX
containing F. By Lemma 2, F is open in vX — X. Thus there is an open subset V
of ¥X such that F =V N (yX — X). Let us set W = UNV. Then for any element
F’ of 7 such that F'NW # &, we have F' C W C U. Clearly, FCW c U.

Case 3. Let U be an open subset of yX containing Fy. Let #' be the collection
of all elements of {F;|¢ € N} not contained in U. Since yX — X is compact and
F; is open in v X — X, 7' is finite. Thus W = U — J{F|F € F'} is open in vX.
For any element F’ of 7 such that F' NW # &, we have F/ ¢ W C U. Clearly,
FpcWcl.

Hence ¥ is an upper semicontinuous decomposition of vX. Let Y = vX/7 be
the quotient space of vX determined by the upper semicontinuous decomposition
7. Then Y is an RCF of X. Theorem 1 is proved.
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3. Ro-point compactifications and singular sets. Cain [1], [2] defined the
singular set as follows: If f: X — Y is a continuous mapping of one locally compact
space onto another, then the singular set S(f) is the collection of all points p € Y
such that in every neighborhood of p there is a compact set with noncompact inverse
image. As a corollary of his main theorem [2, Theorem 3.1], Cain proved that a
connected locally compact space X has an n-point compactification if and only if
there is a continuous mapping f of X onto a compact space Y so that S(f) consists
of exactly n points [2, Theorem 3.2]. Cain, Chandler and Faulkner [3] strengthened
this theorem, so it remains true without connectedness. Chandler and Tzung (4]
defined the remainder induced by f to be

C(f)= ﬂ{Cny(X — F)|F is a compact subset of X},

and proved that (whenever Y is compact) there is a compactification X with
aX — X homeomorphic to C(f). Their “remainder induced by f” is the same as
a singular set [3]. Thus the “if” part of Cain’s theorem holds for any cardinality
of S(f). However, for every compactification X there need not be a singular set
S(f) with S(f) homeomorphic to aX — X. Indeed, the Stone-Cech compactification
BN of a countably infinite discrete space N has no singular set S(f), with S(/f)
homeomorphic to SN — N, because the cardinality of S(f) is at most countable.
As a corollary of Theorem 1, we can prove the following result, which is analogous
to Cain’s theorem.

THEOREM 2. A locally compact space X has an RgCF if and only if there is a
continuous mapping f of X onto a compact space Y such that S(f) has cardinality
Ro.

PROOF. It suffices to prove the “only if” part. Suppose X has an RoCF. By
Theorem 1 there is a sequence {U;|¢ € N} of pairwise disjoint v-open subsets of X
each with noncompact closure. For each 7 = 2,3, ..., choose a point z; € U; and put
F; = (ClyxU; N (vX — X)) U {z;}, where vX is the Freudenthal compactification
of X. Let F} = X — WX - Clyx(X - Uy)lt = 2,3,...}. Let # = {F|: €
N} U {{z}|z € vX — J{Fi|l: € N}}. Then as in Theorem 1 we can prove that 7
is an upper semicontinuous decomposition of vX. Thus ¥ = vX/7 is a compact
Hausdorff space. Let g: X — ~X be an embedding and ¢: vX — Y a quotient
mapping. Then the composition f = g o g is a continuous mapping of X onto
Y. Let us set {a;} = ¢(F;) for each i € N and A = {a;|s € N}. Then we have
g YHA) =X - U{U;i — {z.:}|t = 2,3,...}. Since X is locally compact, it is open
in vX. Thus ¢~ !(A) is closed in vX. Since q is a quotient mapping, A is closed in
Y. Then U =Y — A is open in Y, and for every compact subset K of U, f~!(K)
is compact, because the restriction of f: X - Y toU CY, fy: f7}(U) - U, isa
homeomorphism. Thus for every y € U we have y ¢ S(f). Next, for each a; and any
neighborhood V; of a; there is an open subset W, such that a; € W; c ClyW; C V;.
Then Cly W, is compact but f~!(ClyW;) is noncompact. Thus we have a; € S(f).
Hence S(f) has cardinality Rg. Theorem 2 is proved.

4. Xg-point compactifications of product spaces. Throughout this section
we assume all spaces to be locally compact. From Theorem 1 it follows that the class
of all spaces having an RoCF is an inverse invariant of perfect mappings. Hence
if X is compact and Y has an RgCF, then X x Y also has an XgCF. However,
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this class is not an invariant of perfect mappings. Indeed, let Z = {0, 1, %, %, S
X =Zx R and Y = R, where R denotes the real line. The projection p: X — Y
is perfect and X has an XgCF. However, Y has no XgCF. As for the existence of
an XoCF of a product space, we obtain the following theorem.

THEOREM 3. A product space X XY has an RoCF if and only if one of the
follounng conditions is satisfied:

(a) either X or Y has an infinite number of components and the other is non-
compact;

(b) esther X or Y has a compact component and the other has an RoCF.

The following corollary is obvious.

COROLLARY. Let X and Y be connected. Then X xY has an RoCF of and only
if esther X or'Y is compact and the other has an RoCF.

To prove Theorem 3 we need some lemmas.

LEMMA 3. If X and Y are noncompact connected spaces, then X X Y has no
NoCF.

PROOF. Suppose X x Y has an RoCF. By Theorem 1 there is a sequence
{Uili € N} of pairwise disjoint v-open subsets of X x Y each with noncompact
closure. Let px: X XY — X and py: X xY — Y be the projections, and let (1, 7)
be a pair of distinct positive integers. We set

A =px(BdxxyU;) x py (BdxxyU;).

Then A is compact. Since X and Y are noncompact and connected, Z = X xY — A
is connected. Since Bdx«yU; C A, we have BdxxyU; N Z =O. Thus Z =
(UiNZ)U((X xY =ClxxyU;)NZ). Hence, Z C ClxxyU; or U;NZ =O. Suppose
Z C ClxxyU;. Since ClxxyU; NU; =, we have U; C A. This implies that
ClxxyU; is compact, and we have a contradiction. Suppose U, N Z = . Then
U; C A. This implies that ClxxyU; is compact, and we have a contradiction.
Hence X x Y has no RgCF.

LEMMA 4. If X 1s a compact connected space and Y has no RoCF, then X xY
has no RoCF.

PROOF. Suppose X x Y has an RoCF. By Theorem 1 there is a sequence
{U;]i € N} of pairwise disjoint y-open subsets of X x Y each with noncompact
closure. Let py: X XY — Y be the projection. Now we set V; = Y —py (X XY -U;).
Since X is compact, py is closed, therefore V; is open in Y. Assume that ClyV;
is compact. Then A = X x (ClyV; U py(BdxxyU;)) is compact. Take a point
(z,y) € U;. If X x {y} C Uy, then y € V;. Thus (z,y) € A. If X x {y} ¢ U;, then
X x{y}NBdxxyU; #9, because X x {y} is connected. Thus y € py (BdxxyU,),
therefore (z,y) € A. Hence U; C A. However, this implies that ClxxyU; is
compact, and we have a contradiction. Thus ClyV; is noncompact. Clearly, for
every pair of distinct positive integers ¢ and 7, V; N'V; = @. Hence {Vi|i € N}
satisfies the conditions of Theorem 1. Thus Y has an 8yCF; however, this is a
contradiction.

By Theorem 1 it is easy to prove the following lemma.
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LEMMA 5. Let X be a space which can be represented as the finite topological
sumX =X10X2® --®X,,. Then X has an RoCF 1f and only if there is a positive
integer (1 <) 7 (< n) such that X; has an RoCF.

PROOF OF THEOREM 3. If both X and Y have at most a finite number of
components, then by Lemmas 3-5, condition (b) holds. If both X and Y have
an infinite number of components, then (a) holds. Assume that X has an infinite
number of components and Y has at most a finite number of components. Let
{Y1,Y,...,Y,} be the collection of all components of Y. If Y is compact, then, by
Lemma 5, there is a positive integer (1 <) 7 (< n) such that X x Y; has an RCF.
By Lemma 4, X has an RX,CF. Hence (b) holds.

Conversely, let X and Y satisfy (a). Suppose X has an infinite number of
components and Y is noncompact. Then there is a sequence {U;|i € N} of pairwise
disjoint open-and-closed subsets of X. Now let V; = U; x Y for each ¢ € N. Then
{Vili € N} satisfies the conditions of Theorem 1. Hence X x Y has an RoCF.

Next, let X and Y satisfy condition (b). Suppose X has a compact component
Xo and Y has an RyCF. If X has an infinite number of components, then X and
Y satisfy (a). Hence X X Y has an RgCF. If X has at most a finite number of
components, then Xy is open-and-closed in X. As described in the first part of §4,
Xo XY has an RpCF. Since X XY = (Xo xY) & ((X — Xo) x Y), and by Lemma
5, X X Y has an R¢CF. Theorem 3 is proved.
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