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No-POINT COMPACTIFICATIONS
OF LOCALLY COMPACT SPACES AND PRODUCT SPACES

TAKASHI KIMURA

ABSTRACT. We give necessary and sufficient conditions for a locally compact

space to have a compactification with countably infinite remainder. We also

characterize the product space of two locally compact spaces having such a

compactification.

1. Introduction. All spaces are assumed to be completely regular and Ti, and

we denote the set of positive integers by N.

A compactification aX of a space X is called an No-point compactification (we

say X has an N0CF) if the remainder aX - X has cardinality K0-

We consider some characterizations of a locally compact space with an Ho CF.

The first to characterize such spaces was Magill [7]. In §2 we give a characterization

analogous to a theorem of Magill [6] concerning the n-point compactification.

The notion of singular set was introduced by Cain [1], and many authors (see

for example [2-4]) have investigated the relationships between compactifications

and singular sets. In §3, as a corollary of our theorem, we characterize a locally

compact space having an NoCF by singular sets.

Recently, Hoshina [5] characterized a product space of two paracompact spaces

having a compactification with countable remainder. Here countable means finite

or infinite countable. In §4, as an application of our theorem, we characterize a

product space of two locally compact spaces having an KoCF.

I wish to thank Professor T. Hoshina for his helpful suggestions, especially for

the simple proof of Theorem 1.

2. No-point compactifications of locally compact spaces.  We begin with

LEMMA 1. Let A be a countably infinite subset of a space X. Then there are

a countably infinite subset B = {bi\i G N) of A and a sequence {Ut\i G N} of

pairwise disjoint open subsets of X such that bt G Ut and BdxUi H A =0 for each

ieN.

PROOF. Since X is regular, there are a point 6i G A and an open subset Vi of

X such that bi ^ OxVi and |Vi fl A\ = N0. Similarly, there are a point b2 G Vi H A

and an open subset V2 of Vi such that 62 ^ ClxVo, and \V2 fl A\ = K0- Continuing

in this manner, we obtain a subset B = {bi\i G N} of A and a sequence {Vz\i G N}

of open subsets of X. Now let Wi = V¿_i - ClxV¿ for each i G N, where V0 = X.

By complete regularity of X, there is a continuous mapping f% : X —* I — [0,1] such

that fi(h) = 0 and /¿(X - Wi) = {1}. Then there is a real number r{ G I such that

Received by the editors April 22, 1983 and, in revised form, February 2, 1984.

1980 Mathematics Subject Classification. Primary 54D35, 54D40.
Key words and phrases. No-point compactification, singular set, Freudenthal compactification,

rim-compact.
©1985 American Mathematical Society

0002-9939/85 $1.00 + $.25 per page

164



No-POINT COMPACTIFICATIONS 165

n i fi(A). Let U{ = f-l(\Q,n)). Since BdxUi C f-\n), we have BdxUtnA = 0.
Hence {Ui\i G N} has all the required properties.

An open set U of a space X is 7-open if BdxU is compact. A space X is called

rim-compact if it has a base consisting of 7-open sets. Clearly, locally compact

spaces are rim-compact. The following lemma, proved by Terada [8, Lemma 3], is

useful.

LEMMA 2. Let X be a rim-compact space and -yX the Freudenthal compactifi-

cation of X. IfUis ^j-open in X, then

cilXu n (7X - X) = (nx - CL,X(X - U)) n (7x - x),

(-¡X - CL,x(X - U)) U (-¡X - CljxU) D"fX-X,     and

(~jX - CL^X - U)) n hx - CllXU) = 0

hold.

We are now in a position to establish one of our main theorems.

THEOREM 1. A locally compact space X has an NoCF if and only if there is a

sequence {Ui\i G N} of pairwise disjoint -f-open subsets of X each with noncompact

closure.

PROOF. Let Y be an NoCF of X. By Lemma 1 there are a countably infinite

subset {a-i\i G N} of Y — X and a sequence {Wi\i G N} of pairwise disjoint open

subsets of Y such that a, G Wx and Bdy Wt n (Y - X) =0 for each i € N. Now

let Ui = Wi fl X for each i G N. Then C\xUi is noncompact. Since Bdxí7¿ C

Bdy Wt C X, BdxUi is compact. Hence {Ui\i G N} has all the required properties.

Conversely, let {Ui\i G N} be a family of pairwise disjoint 7-open subsets of

X each with noncompact closure. Let ■fX be the Freudenthal compactification

of X, F% = Cl^xUi D (7X - X) and F0 = (7X - X) - (j{Ft\i G N}. Then
? = {Fi\i = 0,1, 2,...} U {{a;}|:r. G X} is an upper semicontinuous decomposition

of-yX.

It is obvious that J is a decomposition of "yX. Hence it suffices to show the

upper semicontinuity of 7.

Case 1. If 1 G X, then for any open neighborhood U of x in -yX, W = [/flX is an

open neighborhood of x in 7X. And for any element F' of J such that F' C\W j^0,

we have F' C W c U.

Case 2. Let F be an element of {F¿|¿ G N} and U an open subset of 7X

containing F. By Lemma 2, F is open in -yX — X. Thus there is an open subset V

of -yX such that F = V C\ (-yX - X). Let us set W = U n V. Then for any element

F' of J such that F'C\W ¿0,we have FclVci/. Clearly, FcW cU.

Case 3. Let J7 be an open subset of 7X containing Fn. Let 7' be the collection

of all elements of {Fi\i G N} not contained in U. Since 7X — X is compact and

F¿ is open in 7X - X, T is finite. Thus W = U - (j{F\F G J'} is open in 7X.

For any element F' of I such that F' C)W ^0, we have F' C W C £/. Clearly,

F0 C W C U.

Hence 7 is an upper semicontinuous decomposition of 7X. Let Y = ^X/T be

the quotient space of 7X determined by the upper semicontinuous decomposition

7■ Then Y is an NqCF of X. Theorem 1 is proved.
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3. No-point compactifications and singular sets. Cain [1], [2] defined the

singular set as follows: If / : X —> Y is a continuous mapping of one locally compact

space onto another, then the singular set S(f) is the collection of all points p G Y

such that in every neighborhood of p there is a compact set with noncompact inverse

image. As a corollary of his main theorem [2, Theorem 3.1], Cain proved that a

connected locally compact space X has an n-point compactification if and only if

there is a continuous mapping / of X onto a compact space Y so that S(f) consists

of exactly n points [2, Theorem 3.2]. Cain, Chandler and Faulkner [3] strengthened

this theorem, so it remains true without connectedness. Chandler and Tzung [4]

defined the remainder induced by / to bo

C(f) = p|{CIy/(X - F) |F is a compact subset of X},

and proved that (whenever Y is compact) there is a compactification aX with

aX - X homeomorphic to C(f). Their "remainder induced by /" is the same as

a singular set [3]. Thus the "if" part of Cain's theorem holds for any cardinality

of S(f). However, for every compactification oX there need not be a singular set

S(f) with S(f) homeomorphic to aX — X. Indeed, the Stone-Cech compactification

ßN of a countably infinite discrete space TV has no singular set S(f), with S(f)

homeomorphic to ßN — N, because the cardinality of S(f) is at most countable.

As a corollary of Theorem 1, we can prove the following result, which is analogous

to Cain's theorem.

THEOREM 2. A locally compact space X has an NoCF if and only if there is a

continuous mapping f of X onto a compact space Y such that S(f) has cardinality

No-

PROOF. It suffices to prove the "only if" part. Suppose X has an N0CF. By

Theorem 1 there is a sequence {Ui\i G N} of pairwise disjoint 7-open subsets of X

each with noncompact closure. For each i = 2,3,..., choose a point x, G Ux and put

F¿ = (Cl-yxt^ n (7X — X)) U {xi}, where 7X is the Freudenthal compactification

of X. Let Fi = -yX - IJÍ7* - CL,x(X - Ut)\i = 2,3,...}. Let 7 = {Ft\i G
N) U {{x}|x G 7X — (J{F¿|¿ € N}}. Then as in Theorem 1 we can prove that 7

is an upper semicontinuous decomposition of 7X. Thus Y = 7X/7 is a compact

Hausdorff space. Let g : X —> 7X be an embedding and q : 7X —♦ Y a quotient

mapping. Then the composition / = q o g is a continuous mapping of X onto

Y. Let us set {a¿} = q(F%) for each i G N and A = {a¿|¿ G N}. Then we have

q~x(A) = 7X — \J{Ui — {xi}\i — 2,3,...}. Since X is locally compact, it is open

in 7X. Thus q~l(A) is closed in 7X. Since g is a quotient mapping, A is closed in

Y. Then U = Y — A is open in Y, and for every compact subset K of U, f~l(K)

is compact, because the restriction of /: X —> Y to U C Y, fu'- f~l(U) —> U, is a

homeomorphism. Thus for every y G U we have y £ S(f). Next, for each at and any

neighborhood V, of a2 there is an open subset W, such that a¿ G Wi C ClyW^ C V».

Then ClyW^ is compact but /_1(ClyW^) is noncompact. Thus we have at G S(f).

Hence S(f) has cardinality No- Theorem 2 is proved.

4. No-point compactifications of product spaces. Throughout this section

we assume all spaces to be locally compact. From Theorem 1 it follows that the class

of all spaces having an NoCF is an inverse invariant of perfect mappings. Hence

if X is compact and Y has an NqCF, then X x Y also has an NqCF.   However,
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this class is not an invariant of perfect mappings. Indeed, let Z = {0,1, \, \,...},

X = Z x R and Y = R, where R denotes the real line. The projection p: X —+ Y

is perfect and X has an NoCF. However, Y has no NoCF. As for the existence of

an NoCF of a product space, we obtain the following theorem.

THEOREM 3. A product space X x F has an NoCF if and only if one of the

following conditions is satisfied:

(a) either X or Y has an infinite number of components and the other is non-

compact;

(b) either X or Y has a compact component and the other has an NoCF.

The following corollary is obvious.

COROLLARY. Let X and Y be connected. Then X x Y has an NoCF if and only

if either X or Y is compact and the other has an NoCF.

To prove Theorem 3 we need some lemmas.

LEMMA 3. If X and Y are noncompact connected spaces, then X x Y has no

N0CF.

PROOF. Suppose X x F has an N0CF. By Theorem 1 there is a sequence

{Ui\i G N} of pairwise disjoint 7-open subsets of X x Y each with noncompact

closure. Let px : X x Y" —> X and pY '■ X x Y —> Y be the projections, and let (i,j)

be a pair of distinct positive integers. We set

A = Px(BdXxYUl) x py(BdxxY^).

Then A is compact. Since X and Y are noncompact and connected, Z = XxY — A

is connected. Since BdxxY^ C A, we have BdxxY^i fl Z = 0. Thus Z =

(UtnZ)U((X xY -C\XxYUl)r\Z). Hence, Z c ClXxYUt or UznZ = 0. Suppose

Z C CIxxyUí- Since C\XxYUi n U3 = 0, we have Uj C A. This implies that

ClXxYUj is compact, and we have a contradiction. Suppose f/¿ fl Z — 0. Then

Ui C A. This implies that C1xxyl7¿ is compact, and we have a contradiction.

Hence X x Y has no N0CF.

LEMMA 4. If X is a compact connected space and Y has no NoCF, then XxY

has no NoCF.

PROOF. Suppose XxY has an N0CF. By Theorem 1 there is a sequence

{<7¿|¿ G iV} of pairwise disjoint 7-open subsets of X x Y each with noncompact

closure. Let pY : XxF —> Y be the projection. Now we set V¿ = Y— pY(XxY — Ui).

Since X is compact, pY is closed, therefore Vj is open in Y. Assume that ClyVj

is compact. Then A = X x (ClYVi Upy(BdxxY^)) is compact. Take a point

(x, y) G Ui. If X x {y} c Ui, then y G V¿. Thus (x, y) G A. If X x {y} ÇL Uu then
X x {y} nBdxxYL^ ^0, because X x {y} is connected. Thus y G pY(BdXxYUi),

therefore (a;, y) G A. Henee í/¿ C A. However, this implies that ClxxY^ is

compact, and we have a contradiction. Thus ClyV¿ is noncompact. Clearly, for

every pair of distinct positive integers i and j, Vi fl Vj = 0. Hence {V¿|¿ G N}

satisfies the conditions of Theorem 1. Thus Y has an NoCF; however, this is a

contradiction.

By Theorem 1 it is easy to prove the following lemma.
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LEMMA 5. Let X be a space which can be represented as the finite topological

sum X = Xi ©X2 © • • • ®Xn. Then X has an NoCF if and only if there is a positive

integer (1 <) 1; (< n) such that X¿ has an NoCF.

PROOF OF THEOREM 3. If both X and Y have at most a finite number of

components, then by Lemmas 3-5, condition (b) holds. If both X and Y have

an infinite number of components, then (a) holds. Assume that X has an infinite

number of components and Y has at most a finite number of components. Let

{Yi, Y2,..., Yn) be the collection of all components of Y. If Y is compact, then, by

Lemma 5, there is a positive integer (1 <) i (< n) such that X x Y¿ has an NoCF.

By Lemma 4, X has an NoCF. Hence (b) holds.

Conversely, let X and Y satisfy (a). Suppose X has an infinite number of

components and Y is noncompact. Then there is a sequence {Ui\i G N} of pairwise

disjoint open-and-closed subsets of X. Now let Vi — Ui x Y for each i G N. Then

{Vi\i G N} satisfies the conditions of Theorem 1. Hence XxY has an NoCF.

Next, let X and Y satisfy condition (b). Suppose X has a compact component

Xo and Y has an NoCF. If X has an infinite number of components, then X and

Y satisfy (a). Hence XxY has an NoCF. If X has at most a finite number of

components, then Xo is open-and-closed in X. As described in the first part of §4,

X0 x Y has an N0CF. Since X x Y = (X0 x Y) ® ((X - X0) x Y), and by Lemma

5, X x Y" has an N0CF. Theorem 3 is proved.
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