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INTEGRABILITY OF POWER SERIES
BABU RAM

ABSTRACT. The object of this paper is to obtain generalization of certain results of
Jain [3] and Woyczynski [S] concerning integrability of power series.

1. Introduction. A nondecreasing continuous real-valued function @ defined on the
nonnegative half line and vanishing only at the origin will be called an Orlicz
function (OF). A function ® € OF is said to satisfy A, (a > 0) condition for large u
if there are constants ¢ > 0 and u,, > 0 such that ®(au) < c®(u), u > u,. A convex
Orlicz function @& satisfying the conditions lim,_ (®(u)/4) = 0 and
lim,_, (®(u)/u) = oo is called a Young function (YF). Function ® belongs to YF if
and only if it admits a representation ®(u) = [;*¢(¢) dt, where ¢(z), t > 0, is
positive, vanishing only at the origin, continuous on the right, nondecreasing and
lim,_,  ¢(¢) = co. Then ®(u)/u < ¢(u) < ®(2u)/u. Let # be the class of Orlicz
functions which satisfy the following condition:

(A ) There exists a convex function A, A > 1, and 0 < « < 1, such that the
inequality A(u) < ®*(u) < AA(u) holds for all u.

Let Ly( X, p), where ® € A, be the Orlicz space, that is, the set of all complex-
valued measurable functions f on a measure space (X, p) such that the modular
[x®(|f(x)]) du is finite. By Hardy-Orlicz space H, we mean a closed subspace of
Ly({0,27), dx) spanned over trigonometric polynomials of the form f(z)=
TN _oa.em

A sequence (a, ) of nonnegative numbers is said to be quasi monotone if for some
a>0,a,,, <a,(l+ a/n)or equivalently n~?a, | 0 for some B > 0.

Let ¥(x) be a nondecreasing positive function such that ¥(x)/x! % decreases as
x increases in (0, a), where a > 0 and § is a small constant depending on ¥. Then
W¥’(x) exists [2] almost everywhere and ¥'(x) > 0.

2. Results. We prove the following:

THEOREM. Let ® € A, N M NYF and f(x) = L2 qa,x*,0 < x <1.If{a,) isa
quasi monotone sequence such that

=)

(2.0) > la, — a1l < Ka,,
k=n
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then the following four statements are equivalent:

(2.1) ?I)r((llf(X)l) = L1
(2.2) %)L) s LOm:
(2.3) ,,é % ’
(2.4) £ v ©

n=1 nz\l,(l/n)

In the special case of decreasing sequence (a,) and ¥ = 1 the above result was
obtained by Woyczynski [5] and in the case ¥(x) = x77, 0 < vy < 1, by Jain [3]. It
may also be mentioned here that the author [4] also obtained some results of this
type for an increasing, positive and convex function ® with no restriction on a,,.

3. Lemmas. The proof of our theorem is based upon the following lemmas, which
are generalizations of the lemmas of Woyczynski [S]. The proof of Lemma 1 also
generalizes a classical Hardy’s inequality (see [6, 9.16]). Let us write F(x) = [ f(¢) dt.

LEMMA 1. Let ® € #,a > 0. Then

«®(F(x)/x) 2(f(x)
jo 20 dx<1<(a)f 0

PrOOF. By virtue of the assumption and of the Jensen’s inequality there exists an
a,0 < a < 1, such that

®%(F(x)/x) < A(jo"w(f(t))x-ldt),

whence

dx.

S(F(x)/x) 1 e [fox"’“(f(’”"'l"’]l/
Gy [ENay e

We consider the integral on the right-hand side of (3.1). We write
H(x) = [[@°(f(1)) a1
0
Then the integral under consideration becomes

a (H(x)/x)""
T
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Integration by parts yields

f(H(x)/x)‘/" _ a(H(a)/a)"" f(H(x)/x)‘/“ ‘(X))
¥(x) ¥(a) 0 a¥(x)

(B ()G,
RO e

Thus, by the above, and by Holder’s inequality
(3.2)

(H(x)/x)l/“ a(H(x)/x)"" '@ “(f(X))
( )f ¥(x) <f0 ¥(x)

@(f(x) , [ po(HG) x|
<(fo ¥(x) )(f owx) ) '

Dividing both sides by the last factor on the right, we get

a(H(x)/9)"" N[ e@(f(x))
(f ¥(x) )\(fo ¥(x) ")

whence
a(H(x)/x)"" o(f(x)
(3.3) jo T s K(a)f ETO8
The inequalities (3.1) and (3.3) then yield
a®(F(x)/x) 2(/(x) ,
j; ¥0x) dx<K(a)f ¥(x) dx
LEMMA 2. Let ® € A, N YF and a > 0. If f(x) is a nonnegative function, then

“®(F(x)) o))
[0y =<K =50

PROOF. Integration by parts and the given hypothesis yield

“@(F(x)) , _ a®(F(a) _ xs(Fx))f(x)
[0 =@ b w0

' <xf(x)¢(F(x))
> f ¥(x)

Now using Chen’s inequality ({1], 3.10 for z = 1), we get on using ®(u)/u < ¢(1)
< ®Qu)/u and ®(au) < c®(u),

xf(x)¢(F(x)) = Max{xf(x)$(xf(x)), F(x)¢(F(x))}
< {@(2xf(x)) + ®(2F(x))} < c[@(xf(x)) + ®(F(x))].
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Therefore

<I>(F(x)) . ¢>(xf(x)) <I>(F(x))
fo ¥(x) fo ¥(x) cfo (x) &

whence

o(F(x) (/)
[ <k [ 25057 ¥(x)

4. Proof of the Theorem. We shall prove the following implications:(2.1) < (2.4);
2.4 = (2.2); 2.2) = (2.3) and (2.3) = (24).

(2.1) = (2.4). In fact, if we write 1 — x = y, then we have for 1/(n + 1) <y <
1/n,n>2

J0=9)> L a0=»)">(1-1/m)" Y a5 %

k=0 k=0
Thus
f(l—y)zKA,, forl/(n+l)<y<1/n (n=2,3,...).

Now

& 9(4, S ne170(4

Z 2( ) <K2f+1 ( [1])dt

n=1n \P(l/n) n=1n \I,(l/t)

- K i 1/n (I)(A[l/u])
1+ ¥(u)

Kj‘l (I)( [l/u]) +K§ jl/n (D(A[l/u])d
1/2 1/n+1y Y(u) “

<K+Kf1/2q’(f\l(,1(—)u))

3 1 9(/(x)
\K+K£) ‘I'(l—x)dx<°°

(2.4) = (2.1). We have

1®(f(x)) e = ~ [1-1/n  ®(f(x))
-[) ¥(1 - x)d nzzf—l/(nn)‘l'(l - x) o

/(-1 ®(f(1 - x))
nZZ'/l'/" \P( )

(=]

f f1/<n_l)¢(k§0ak(1 _ x)")

n=2"1/n ‘I’(X)

dx
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d»( Y a1 - 1/n>k)
1/(n—-1)

k=0
n=2%"1/n ‘I’(X)

dx

n=2 nzqf(l/n)

w  n(k+1)
) )

k=0 j=0

n=2 nz‘I’(l/n)

o( T e k(k + l)A,,)

ad k=0
< K,,gz n?¥(1/n)

n=2 nZ\P(l/n)
(2.4) = (2.2). We have

0
|Re f(e™)|=| X a,cos kx
k=1

n 0
=Y a,coskx + Y. a,coskx
k=1 k=n+1

n o0
=| X a,coskx + Y (a, — a,,,)D,(x) — a,D,(x)
k=1 k=n

o0
<A, +0(/x) ¥ la, = ap,|+ O(x‘lan).
k=n

Then, on account of (2.0), it follows that

) R ix o0 /n & (IR ix
[ (Res(e™)]) , _ 5[ (Res(e™)])
0 ¥(x) no1Jn/neny ¥(x)
X fa/n + + 1
-5 [ ®[4, + 0(1/x)(a,) + O(/x)(a,)]
n=1 /(4 1) ¥(x)
<KY ®(A4, + na,)
n=1 nz\I,(l/n)
Since (n~Pa,) is monotonically decreasing,
A, =Y kPakP>nPa,) kP> KnPa,nP*' = Kna,.

k=1 k=1
Therefore, we have
,”(I, R ix 00 A
[RRAE) 5 Bl
0 ¥(x) n=1 n>¥(1/n)
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It can be proved similarly that
f"‘l’(|1mf(ei")|)
0 ¥(x)
(2.2)=(2.3). Let r(t) = Re f(e"). The condition (2.0) implies that (a,) is a
sequence of bounded variation. Hence the Fourier series of r converges for x > 0.
We write

dx < o0.

R(1) = f’r(x) dx and R,(t)= j’R(x) dx.
0 0
Integrating the Fourier series of r(¢), we have

o0
R(1) = ¥ a;(1 - cos jt)j?
Jj=1

n
> ) a,j (1 - cos jt)
j=1

" sin? jit
= 2 Zj_zaj 2

Jj=1

n s 4 j2t2
>2Zj aj—z-T, a/(n+1)<t<m/n

j=1 4

n
> Kt* ) a; > Kt*na, due to the monotonicity of (n%a,).
j=1

Now, by Lemma 1, we have
o0

®(na,) < am ®(x2R(x))
ngl nz‘I’(l/n) - ngl 'l;'/("+1) \I’(x)

_ "Q(x_le(x))
e

dx
dx

d)(x‘ZLxIR(t)ldz)

o A TP
ﬂq>(x'1f0x|—’5¥ﬂdz)
o AT
of B2
< Kfo 70 dx
= ®(|r(x)])
<K A —\I'(x) dx
= ®(|f(e™)]
< K./(; (‘I’—(X)—)—dx < 00.
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(2.3) = (2.4). Let a(x) be a function equal to a,if n—1<x<n,n=1,2,..., and
let A(x) = [ga(t) dt. The assumption
o0
Z :D ( nan )
n=1"M \I'(l/ n)
implies that ®(za(z))/¥(¢) is integrable on the positive half line. Then, by virtue of
Lemma 2, [§(®(A(¢))/¥(¢))dt < oo. But this is equivalent to the convergence of
the series X%_,®(4,)/n*¥(1/n). This completes the proof of the theorem.
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