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ON THE EXPONENT OF NORM RESIDUE GROUPS

W. HÜRLIMANN1 AND D. SALTMAN

Abstract. We compute the exponent of some norm residue groups in the number

theoretic case (global fields). We use the method of Galois cohomology and the

theory of the Brauer group over a global field.

Let n be a natural number and let K/k be a Galois extension of arbitrary fields

with bicyclic group G = Z/n X Z/n generated by s and t. By Hr(G, K *), r g Z, we

mean the Täte cohomology groups of G with coefficients in the multiplicative group

of K. We consider the following diagram of sub fields of K and relative norms:

,A.    :■;

K(s) = K^       N ~W = K(o

We use the known structure of the third Galois cohomological groups (see [4 and 5]):

(1) H3(G, K*) = Z3/B3 = NXK2* n N2K*/NK*.

where the 3-cocycles are

Z3 = [c = (a, b) g K* X &2*\N2aNxb = l}

and the 3-coboundaries are

B3 = {c= (a,b) G AT* x K2*\ there exists (x, y, z) g K* X K2* X AT*

such that t(x)Nlz = ax, s(y) = byN2z) .

The sets Z3 and B3 are multiplicative groups through the operation (a, b)(a\ b') =

(aa\ bb'). The isomorphism in (1) is induced by the map Z3 -» /VjA^* n N2KX*/NK *

which sends c = (a, b) to A/2a = /Vj/b"1 mod NK*.

The Diophantine equation N(x) = a", a g k*, x an indeterminate with value in

AT, is of interest.

Lemma. Let K/k be a Galois extension of arbitrary fields with group G = Z/n X

Z/n, n G N. If H3(G, A"*) = 0, then k*/NK* has exponent at most n, that is, every

nth power of k* is a norm.

Proof. For all a g k*, the 3-cocycle c = (a, a"1) is a coboundary. Hence the

equation N(x) — a" has a solution.
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It is possible to improve on this.

Theorem 1. Let K/k be a Galois extension of global fields with group G = Z/p X

Z/p,p an odd prime. Then the abelian group k*/NK* is of exponent p.

Proof. As k*/NK* = H°(G, K*) has exponent at most/?2, it suffices to show

that ap = N(x) has a /c-rational point for every a g k*. The equation N(x) = ap

can be written as Ny(aN2(x~1)) = 1. Using Hilbert 90, it suffices to find d g A"2*,

x g K * such that

(2) a = N2(x)s(d)d-\

We interpret this equation in terms of central simple algebras. We introduce the

cyclic crossed products A = (K/K2, a), B = (Kx/k, a) and C = (K/K2, d). In the

Brauer group, we have the following similarity (square brackets denote similarity):

(3) [A]=[B®kK2]        [3,(29.13)].

We write Cs for the algebra C with the new AT2-module structure defined by

k ■ d = s(k)d, k g a:2, d g C. One can show that Cs = (K/K2, s(d)). We observe

that solving (2) is the same as finding a central simple A"2-algebra C such that

(4) [A]=[c>®K2C°v}.

If a g N2K*, there is nothing to show. Hence we suppose that A is not the trivial

algebra. We use the local invariants of Hasse for the description of the Brauer group

of a global field [3, Chapter 8, or 2, Chapter VII]. We will need the exact sequence

[3, (32.14)] for the extension K/K2. As A is obtained from B by extension of the

base field, we have from [2, Theorem 4, p. 113]

( 5 ) ( A /w ) = n v ( B/v )    for all places w of AT2 above the place v of k.

Here (A/w),(B,/w) respectively nv denote the local invariants of the classes of A, B

respectively the local degree of the extension (K2)w/kv. Thus the computation of the

local invariants for the class of A is reduced to a computation concerning the algebra

B. Let w be a place of K2 and v its restriction to k. Three cases are possible.

Case 1. If w is an infinite place, it is clear that (A/w) = 0. Indeed, if (A/w) = \,

then the local index 2 divides the exponent/) of the algebra A, which is impossible.

Case 2. If w is a finite place invariant under the action of s, then nv= p and

(A/w) = (B/v)p. But (B/v) = 0 or sjp, with (sv, p) = 1, since [B] g Br(Kx/k)

is of exponent 1 or p. It follows that (A/w) = 0.

Case 3. If the finite place w is not invariant under s, we have p places w =

wx, w2,...,w above v and nv = 1. It follows that (A/wt) = (B/v) = 0 or sjp with

(w)=i-
As the next step, we construct a class [C] by giving its local invariants. If

(A/w) = 0, we put (C/w) = 0. We remark that s is transitive on w,, w2,...,wp and

that (Cs/ws) = (C/w). If (A/wt) = sjp for / = !,...,/>, we take the sequence of

local invariants

{(C/wx),(C/w2),...,{C/wp)} = [s0/p,2sJp,...,{P - lK//>,0}
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such that after appropriate numbering of the w,'s, we have

{{CJwx),...,{CJwp)} = {2sjp,3sjp,...,0,sjp}.

As EH,i,,(C/w) = (p — l)i(,/2 = 0 modZ if p is odd, the class [C] is uniquely

determined. The field K splits C, since if (C/w) # 0, then (A/w) # 0, and so K has

local degree p at w. From the theory of crossed products and the fact that

Br(K/K2) = H2((t), K*) s K2*/NK*, there exists d e K2* such that C =

(K/K2,d). By construction, the class of Cs ®KCop possesses the same local

invariants as the class of A. It follows that the algebra (K/K2, a~1s(d)d~1), which is

similar to the algebra Aop ® Cs ® Cop, is a matrix algebra. Therefore we have

a~ls(d)d~l g N2K* and the proof is complete.

Remark. The above proof is not valid if we omit the assumption p is odd. In fact

there are biquadratic bicyclic extensions K/k such that k */NK * is of exponent 4 as

we will show below. This illustrates once more the difference in number theory

between 2 and the other primes.

Theorem 2. Let K/k be a Galois extension of global fields with group G = Z/2 X

Z/2. Then we have:

(I) IfH3(G,K*) = Q, then k*/NK* is of exponent 2.

(ll)IfH3(G, A"*) * 0, thenk*/NK* is of exponent 4.

Proof. In view of the lemma, it remains to show (II). The first author has

computed that H3(G, K*) = k*/UUi^iK*> where ^3is the norm from Ks = K<s,)

to k. (Details of proof will appear elsewhere; a connection with the Hasse problem is

given below.) On the other side, we have U3=XN¡K* = {x g k*\x2 g NK*} [1,

Exercise 5, p. 360]. Since H3(G, K*) # 0, there exists x g k* with x2 <£ NK*. We

are done.

Remark. One can show that H3(G, K*)= NXK2* n N2KX*/NK* is equal to the

group {local norms}/{global norms}. The question whether a local norm is equal to

a global norm is known as the Hasse problem. In the biquadratic case, consider the

explicit isomorphism NXK2* n N2KX*/NK* = k*/Yl3=xNiK*, which sends a class

Nxa = N2b~l mod NK* to the class aNK/K(d)mod Vl3=xNiK*, where d satisfies

ab = st(d)d~l. Using this isomorphism and Exercise 5 in [1], the first author has

produced an algorithm which solves the Hasse problem in this particular case

(details will appear elsewhere).
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