ON C^* -EMBEDDING IN β N AND THE CONTINUUM HYPOTHESIS

ALAN S. DOW¹ AND R. GRANT WOODS²

ABSTRACT. Let βN denote the Stone-Čech compactification of the natural numbers N with the discrete topology. It is shown that the continuum hypothesis holds iff for each pair X and Y of homeomorphic subspaces of βN , X is C*-embedded in βN iff Y is. Related questions concerning C*-embedded subsets of βN are investigated assuming the hypothesis $2^{\aleph_0} < 2^{\aleph_1}$.

1. Introduction. All hypothesized topological spaces are assumed to be completely regular and Hausdorff. Thus "space" will mean "completely regular Hausdorff topological space". For undefined notation and terminology see [GJ or Wa].

Let S be a subspace of a space X. In general, the question of whether S is C^* -embedded in X depends not only on the topology of S but also on "how S is placed in X". In other words, a space X may contain homeomorphic subspaces S and T with S C^* -embedded in X and T not. For example, Q and $Q \setminus \{0\}$ are homeomorphic dense subspaces of βQ ; the former is C^* -embedded in βQ , the latter is not (Q denotes the space of rationals and βQ its Stone-Čech compactification). Another example is provided by the homeomorphic subspaces $(-\infty, 0]$ and (-1, 0] of **R**.

The situation can be different when one considers subspaces of βN . In fact, it is consistent with the usual axioms of set theory that whether a subspace X of βN is C^* -embedded in βN depends only on the topology of X. Specifically, the following theorem is 2.2 of $[\mathbf{Wo}]$. Recall that a space X is weakly Lindelöf if, for each open cover $\mathscr C$ of X, there exists a countable subfamily $\mathscr F$ of $\mathscr C$ such that

$$X = \operatorname{cl}_X [\bigcup \{ F : F \in \mathscr{F} \}].$$

We denote the continuum hypothesis by CH, and the cardinal 2^{\aleph_0} by c.

- 1.1 THEOREM. Assume CH. Then the following conditions on a subspace X of βN are equivalent:
 - (a) X is C*-embedded in β N.
 - (b) $|C^*(X)| = c$.
 - (c) X is weakly Lindelöf.

Received by the editors May 15, 1984 and, in revised form, July 3, 1984.

1980 Mathematics Subject Classification. Primary 54C45.

Key words and phrases. C^* -embedding in βN .

¹Research was supported by N.S.E.R.C. Grant No. UO310.

²Research was supported by N.S.E.R.C. Grant No. A7592.

However, if one assumes that $c = 2^{\aleph_1}$ (which also is consistent with the usual axioms of set theory), the situation is known to be different. Denote the discrete space of cardinality α by $D(\alpha)$ (thus $N = D(\aleph_0)$). The following result is due to Efimov (see Remark 8 on p. 274 of [E]).

1.2 THEOREM. Assume $c = 2^{\aleph_1}$. Then βN contains a C^* -embedded copy of $D(\aleph_1)$.

By contrast, Balcar, Simon and Vojtaš prove the following result without using any set-theoretic assumptions (see 3.5 of [BSV]). (This result was independently proved (but not published) by K. Kunen and by S. Shelah.)

1.3 THEOREM. βN contains a copy S of $D(\aleph_1)$ such that $\operatorname{cl}_{\beta N} S$ is homeomorphic to the one-point compactification of the space $\{\alpha \in \beta D(\aleph_1): \text{there exists } A \subset D(\aleph_1) \text{ such that } |A| \leqslant \aleph_0 \text{ and } \alpha \in \operatorname{cl}_{\beta D(\aleph_1)} A\}$. In particular, S is not C^* -embedded in βN .

Thus if $c = 2^{\aleph_1}$, βN contains two homeomorphic subspaces, one C^* -embedded in βN and the other not.

- 1.4 Definition. Let \mathcal{P} be a topological property.
- (a) A space X has the absolute C^* -embedding property for $\mathscr P$ if, whenever S is a C^* -embedded subspace of X, S has $\mathscr P$, and T is a subspace of X that is homeomorphic to S, then T is C^* -embedded in X.
- (b) A space X has the absolute C^* -embedding property if X has the absolute C^* -embedding property for \mathcal{P} for every \mathcal{P} .

Thus βN has the absolute C^* -embedding property if CH is assumed, but does not have it if it is assumed that $c = 2^{\aleph_1}$. This raises the question of whether βN has the absolute C^* -embedding property if $c < 2^{\aleph_1}$. In §2 we show the answer is "no"; in fact, we prove the following, which is the main result of this paper.

- 1.5 Theorem. The following are equivalent:
- (a) CH,
- (b) β **N** has the absolute C*-embedding property.

In §3 we produce examples of some topological properties \mathscr{P} such that βN has the absolute C^* -embedding property for \mathscr{P} iff $c < 2^{\aleph_1}$.

- 2. C^* -embedding in βN when CH fails. In this section we prove 1.5. Recall that a space X is a P-space if its G_{δ} -sets are open. See [GJ or Wa] for basic information on these spaces; note particularly that P-spaces have an open base of clopen sets. Denote by $\mathcal{B}(X)$ the set of clopen subsets of a space X. The following theorem is implicitly stated and proved in §2 of [DvM]. We include a proof for completeness.
- 2.1 THEOREM. Let X be a P-space for which $|\mathcal{B}(X)| \leq c$. Then βX can be embedded in βN .

PROOF. Note that if $|\mathscr{B}(X)| \le c$ then $|\mathscr{B}(\beta X)| \le c$. Since βX is zero-dimensional, standard "evaluation map" techniques show that βX can be embedded in $\{0,1\}^c$, where $\{0,1\}$ is the two-point discrete space. The argument in §2 of [**DvM**] then shows that βX can be embedded in the absolute $E(\{0,1\}^c)$ of $\{0,1\}^c$ (see [**Wa**, Chapter 10, or **Wo**₂] for a discussion of absolutes). Since $E(\{0,1\}^c)$ is separable and

extremally disconnected (since $\{0,1\}^c$ is separable), it can be embedded in βN (see [E]). \square

2.2 DEFINITION. For each ordinal α , define $L(\alpha)$ to be the topological space whose underlying set is $\alpha + 1 \setminus \{\lambda \in \alpha + 1 : \lambda \text{ is a limit ordinal of countable cofinality}\}$, and which has the subspace topology inherited from the order topology on $\alpha + 1$. (Here, as usual, $\alpha + 1$ is thought of as the set of ordinals no greater than α .)

The space $L(\omega_2)$ has been previously used—see [vD or D], for example—to solve problems similar to the ones discussed herein. We collect some known properties of $L(\omega_2)$ in the following

- 2.3 PROPOSITION. (a) $L(\alpha)$ is a Lindelöf P-space for every α (the proof is identical to that indicated in [vD] for the case $\alpha = \omega_2$).
- (b) Let $T = L(\omega_2) \setminus \{\omega_2\}$. Then T is a dense C-embedded subspace of $L(\omega_2)$ and $vT = L(\omega_2)$ (9L of [GJ]).

(c)
$$|\mathscr{B}(T)| = |\mathscr{B}(L(\omega_2))| = c \cdot \aleph_2[\mathbf{v}\mathbf{D}].$$

We need a special case of the following, which is (as indicated below) an immediate consequence of known results.

2.4 Lemma. Let α and β be two ordinals. Then $L(\alpha) \times L(\beta)$ is a Lindelöf space.

PROOF. If Y is a space, let Y_{δ} denote the space whose underlying set is that of Y, and for which the G_{δ} -sets of Y form an open base. It is easy to see that $L(\alpha) \times L(\beta)$ is homeomorphic to $[(\alpha + 1) \times (\beta + 1)]_{\delta}$, where $\alpha + 1$ and $\beta + 1$ are given the usual order topology. It is known that if Y is a compact scattered space, then Y_{δ} is Lindelöf; see, for example, p. 27 of [M]. Since $(\alpha + 1) \times (\beta + 1)$ is compact scattered, the lemma follows. \square

2.5 COROLLARY.
$$L(\omega_2) \times L(\omega_2)$$
 is Lindelöf and $|\mathcal{B}(L(\omega_2) \times L(\omega_2))| = c \cdot \aleph_2$.

PROOF. For the second claim, note that as $L(\omega_2) \times L(\omega_2)$ is Lindelöf, every clopen set of $L(\omega_2) \times L(\omega_2)$ is the union of countably many basic clopen sets of $L(\omega_2) \times L(\omega_2)$ of the form $A \times B$, where $A, B \in \mathcal{B}(L(\omega_2))$. Thus

$$|\mathscr{B}(L(\omega_2) \times L(\omega_2))| \leq (|\mathscr{B}(L(\omega_2))| \times |\mathscr{B}(L(\omega_2))|)^{\aleph_0}$$

$$= (c \cdot \aleph_2)^{\aleph_0} \quad \text{(follows from 2.3(c))}$$

$$= c \cdot \aleph_2. \quad \Box$$

Henceforth we denote the space $L(\omega_2)$ by L.

PROOF OF 1.5. (a) \Rightarrow (b). This is part of 1.1.

(b) \Rightarrow (a). Suppose CH fails. Let $J = T \oplus T$ (the direct sum of two copies of the space T of 2.3(b)). Note that J is a P-space. By 2.3(c), $|\mathcal{B}(J)| = \aleph_2 \cdot c = c$ (as CH fails). Hence, by 2.1, J can be C^* -embedded in $\beta \mathbb{N}$.

Finite products of *P*-spaces are *P*-spaces (4K.6 of [GJ]), so, by 2.5, $L \times L$ is a *P*-space and $|\mathcal{B}(L \times L)| = c$. Hence, by 2.1, $\beta(L \times L)$ can be embedded in βN . Now $(\{\omega_2\} \times L) \cup (L \times \{\omega_2\}) \setminus \{(\omega_2, \omega_2)\} = J_1$ is homeomorphic to *J* and is a subspace of $L \times L$. But (ω_2, ω_2) is in the $L \times L$ closure of the complementary clopen sets $\{\omega_2\} \times L$ and $L \times \{\omega_2\}$ of J_1 , so J_1 is not C^* -embedded in $L \times L$. Thus

- a homeomorph of J can be embedded in βN in such a way that it is not C^* -embedded in βN . Hence (b) fails. \square
- 3. What happens when $c < 2^{\aleph_1}$. We now show that for certain topological properties \mathscr{P} , βN has the absolute C^* -embedding property for \mathscr{P} iff $c < 2^{\aleph_1}$.

Recall (see [B]) that a space X is $\delta\theta$ -refinable if, for each open cover $\mathscr C$ of X, there exists a countable collection $\{\gamma_n: n \in \mathbb N\}$ of open covers of X, each refining $\mathscr C$, such that for each $x \in X$ there exists $n(x) \in \mathbb N$ for which $|\{V \in \gamma_{n(x)}: x \in V\}| \leq \aleph_0$. A space is \aleph_1 -compact if it has no uncountable closed discrete subsets. The following result of Aull appears in $[A_1]$.

3.1 Theorem. An \aleph_1 -compact $\delta\theta$ -refinable space is Lindelöf.

An immediate consequence is the following

- 3.2 THEOREM. The following are equivalent:
- (a) $c < 2^{\aleph_1}$.
- (b) βN has the absolute C^* -embedding property for "normal $\delta \theta$ -refinable".
- PROOF. (a) \Rightarrow (b). Let X and Y be homeomorphic normal $\delta\theta$ -refinable subspaces of βN . If X is \aleph_1 -compact, then, by 3.1, X is Lindelöf. By 5.2 of [N], Lindelöf subspaces of F-spaces are C^* -embedded, so X and Y are C^* -embedded in βN . If X is not \aleph_1 -compact, X contains a closed copy of $D(\aleph_1)$. Since X is normal, this is C^* -embedded in X. Thus $|C^*(Y)| = |C^*(X)| \ge |C^*(D(\aleph_1))| = 2^{\aleph_1} > c = |C^*(\beta N)|$, so neither X nor Y is C^* -embedded in βN .
- (b) \Rightarrow (a). If $c = 2^{\aleph_1}$, then as noted in $\S1$, βN contains two copies of $D(\aleph_1)$, one C^* -embedded and the other not. Since $D(\aleph_1)$ is normal $\delta\theta$ -refinable, (b) fails. \square

Note that the space T of 2.3(b) is normal, so " $\delta\theta$ -refinable" cannot be dropped from 3.2(b) above.

Although not directly connected to our previous work, the following related results are of interest.

3.3 LEMMA. Assume $c < 2^{\aleph_1}$. Then a normal, $\delta\theta$ -refinable weakly Lindelöf space of weight no greater than c is Lindelöf.

PROOF. It is a special case of 2.4 of [CH] that if X is weakly Lindelöf, then $|C^*(X)| \le w(x)^{\aleph_0}$, where w(x) denotes the weight of X (the least cardinality of an open base of X). Thus $|C^*(X)| = c$ as $w(x) \le c$. Now argue as in the proof of 3.2. \square

3.4 EXAMPLE. Assume that $c = 2^{\aleph_1}$. By 2.1, $\beta N \setminus N$ contains a C^* -embedded copy S of $D(\aleph_1)$. It follows that $N \cup S$ is a normal (in fact, perfectly normal) separable θ -refinable space, but is not Lindelöf. Note that $w(N \cup S) \le c$ as $N \cup S \subseteq \beta N$. Thus the assumption " $c < 2^{\aleph_1}$ " in 3.3 cannot be dropped.

Let $\mathcal{R}(X)$ denote the collection of regular closed subsets of X.

- 3.5 Theorem. The following are equivalent:
- (a) $c < 2^{\aleph_1}$.
- (b) If X is normal and $\delta\theta$ -refinable and $|\mathcal{R}(X)| \leq c$, then X is Lindelöf.
- (c) Each normal separable θ -refinable space is Lindelöf.

- PROOF. (a) \Rightarrow (b). If there were \aleph_1 pairwise disjoint nonempty open subsets of X, then $|\mathscr{R}(X)| \ge 2^{\aleph_1} > c$. Thus X satisfies the countable chain condition and hence is weakly Lindelöf (see 1.1 of [Wo], for example). Since X is regular, $w(X) \le |\mathscr{R}(X)|$. Now apply 3.3.
- (b) \Rightarrow (c). If X is separable, then $|\mathcal{R}(X)| \le c$, since if T is dense in X, then $A \to \operatorname{cl}_X A$ is a bijection from $\mathcal{R}(T)$ onto $\mathcal{R}(X)$.
 - (c) \Rightarrow (a). Consider 3.4. \square

The authors wish to thank the referee for suggesting Example 3.4 and the inclusion of 3.5(c).

Note that the space $D(\aleph_1)$ witnesses the fact that "weakly Lindelöf" cannot be deleted from the statement of 3.3. The space T of 2.3(b) witnesses that " $\delta\theta$ -refinable" cannot be deleted from 3.5(b), while Isbell's space Ψ (see 5I of [GJ]), which is θ -refinable, witnesses that "normal" cannot be deleted from 3.5(b).

- 4. Open questions. It seems plausible that a stronger result that 3.2 is true. In particular, it is known (see [Z]) that a normal θ -refinable space must (in the absence of measurable cardinals, which obviously do not concern us here) be realcompact. This together with 3.2 suggest the following
- 4.1 Question. Assume that $c < 2^{\aleph_1}$. Does βN have the absolute C^* -embedding property for realcompactness? In fact, does there exist a realcompact C^* -embedded non-weakly-Lindelöf subspace of βN ?

Note that the example J used in the proof of 1.5 is not realcompact. We have the following partial result.

- 4.2 THEOREM. Let X be a subspace of βN that is a realcompact P-space. The following are equivalent:
 - (a) Every subspace of βN that is homeomorphic to X is C^* -embedded in βN .
 - (b) X is Lindelöf.

PROOF. (b) \Rightarrow (a). This follows from 5.2 of [N] (as quoted in 3.2).

(a) \Rightarrow (b). Assume (b) fails. If $|C^*(X)| > c$, then (a) fails and we are done, so assume $|C^*(X)| = c$. Since X is a realcompact P-space but is not Lindelöf, it follows from Lemma 3D of $[\mathbf{A}_2]$ that X contains complementary clopen subsets A and $X \setminus A$, neither of which is Lindelöf. Arguing as in the proof of 5.3 of $[\mathbf{DF}]$, we see that there exist compact subsets K and L of $\operatorname{cl}_{\beta X} A \setminus X$ and $\operatorname{cl}_{\beta X} (X \setminus A) \setminus X$, respectively, such that the quotient space Y of $X \cup K \cup L$, formed by collapsing the compact set $K \cup L$ to a point, is a P-space containing X as a dense subspace. Then $|C^*(Y)| = c$, so obviously $|\mathscr{B}(Y)| \leqslant c$. Hence, by 2.1, there exists a copy of B in BN. As $\operatorname{cl}_Y A \cap \operatorname{cl}_Y (X \setminus A) \neq \emptyset$, this copy of B contains a copy of X that is not C^* -embedded in BN. \square

We are left with these problems:

4.3 Questions. (a) Suppose that $c < 2^{\aleph_1}$ and that X is a realcompact P-space that is C^* -embedded in βN . Must X be Lindelöf? (Since a weakly Lindelöf P-space is easily seen to be Lindelöf, this is a special case of the second question in 4.1.)

(b) Suppose that X is a realcompact space (or even a realcompact P-space) and $|f[X]| \leq \aleph_0$ for every $f \in C^*(X)$. Must X be Lindelöf? (See [LR] for work related to this.)

REFERENCES

- [A₁] C. E. Aull, A generalization of a theorem of Aquaro, Bull. Austral. Math. Soc. 9 (1973), 105-108.
- [A₂] _____, Absolute C*-embedding of P-spaces, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 26 (1978), 831-836.
- [BSV] B. Balcar, P. Simon and P. Vojtas, Refinement properties and extensions of filters in Boolean algebras, Trans. Amer. Math. Soc. 267 (1981), 265-283.
- [B] R. L. Blair, Closed-completeness in spaces with weak covering properties, Set Theoretic Topology (George M. Reed, ed.), Academic Press, New York, 1977, pp. 17–45.
- [CH] W. W. Comfort and A. W. Hager, Estimates for the number of real-valued continuous functions, Trans. Amer. Math. Soc. 150 (1970), 619-631.
- [vD] E. van Douwen, A basically disconnected normal space Φ with $|\beta \Phi \setminus \Phi| = 1$, Canad. J. Math. 31 (1979), 911–914.
 - [D] A. S. Dow, CH and open subsets of F-spaces, Proc. Amer. Math. Soc. 89 (1983), 341-345.
 - [DF] A. S. Dow and O. Forster, Absolute C*-embeddings of F-spaces, Pacific J. Math. 98 (1982), 63-71.
- [DvM] A. S. Dow and J. van Mill, An extremally disconnected Dowker space, Proc. Amer. Math. Soc. 86 (1982), 669-672.
- [E] B. A. Efimov, Extremally disconnected compact spaces and absolutes, Trans. Moscow Math. Soc. 23 (1970), 243–285.
 - [GJ] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960.
 - [LR] R. Levy and M. D. Rice, Normal P-spaces and the G_{δ} -topology, Colloq. Math. 44 (1981), 227–240.
- [M] P. R. Meyer, Function spaces and the Aleksandrov-Urysohn conjecture, Ann. Mat. Pura Appl. (4) 86 (1970), 25-29.
 - [N] S. Negrepontis, On the product of F-spaces, Trans. Amer. Math. Soc. 136 (1969), 339-346.
 - [Wa] R. C. Walker, The Stone-Cech compactification, Springer-Verlag, New York, 1974.
- [Wo] R. G. Woods, Characterizations of some C*-embedded subspaces of βN, Pacific J. Math. 65 (1976), 573–579.
- [**Z**] P. Zenor, Certain subsets of products of θ -refinable spaces are realcompact, Proc. Amer. Math. Soc. **40** (1973), 612–614.

Department of Mathematics, The University of Toronto, Toronto, Ontario, Canada M5S 1A1

DEPARTMENT OF MATHEMATICS AND ASTRONOMY, THE UNIVERSITY OF MANITOBA, WINNIPEG, MANITOBA, CANADA R3T 2N2