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ON C»-EMBEDDING IN ßN AND

THE CONTINUUM HYPOTHESIS

ALAN S. DOW1 AND R. GRANT WOODS2

Abstract. Let /3N denote the Stone-Cech compactification of the natural numbers

N with the discrete topology. It is shown that the continuum hypothesis holds iff for

each pair X and Y of homeomorphic subspaces of ßN, X is C*-embedded in ßN iff

Y is. Related questions concerning C*-embedded subsets of ßN are investigated

assuming the hypothesis 2N° < 2H'.

1. Introduction. All hypothesized topological spaces are assumed to be completely

regular and Hausdorff. Thus "space" will mean "completely regular Hausdorff

topological space". For undefined notation and terminology see [GJ or Wa].

Let .5 be a subspace of a space A. In general, the question of whether S is

C*-embedded in A depends not only on the topology of S but also on "how S is

placed in A". In other words, a space A may contain homeomorphic subspaces S

and T with S C*-embedded in A and F not. For example, Q and Ô \{0} are

homeomorphic dense subspaces of ßQ; the former is C*-embedded in ßQ, the latter

is not (Q denotes the space of rationals and ßQ its Stone-Cech compactification).

Another example is provided by the homeomorphic subspaces (-00,0] and (-1,0]

ofR.

The situation can be different when one considers subspaces of ßN. In fact, it is

consistent with the usual axioms of set theory that whether a subspace A of /SN is

C*-embedded in ßN depends only on the topology of A. Specifically, the following

theorem is 2.2 of [Wo]. Recall that a space A is weakly Lindelof if, for each open

cover ^ of A, there exists a countable subfamily & of # such that

A=clA,[U{F:FGjf-}].

We denote the continuum hypothesis by CH, and the cardinal 2S° by c.

1.1 Theorem. Assume CH. Then the following conditions on a subspace X of ßN are

equivalent:

(a) A is C *-embedded in ßN.

(b)|C*(A)| = c.

(c) A is weakly Lindelof.
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However, if one assumes that c = 2S> (which also is consistent with the usual

axioms of set theory), the situation is known to be different. Denote the discrete

space of cardinality a by D(a) (thus N = Z>(N0)). The following result is due to

Efimov (see Remark 8 on p. 274 of [E]).

1.2 Theorem. Assume c = 2Nl. Then ßN contains a C*-embedded copy o/F(S,).

By contrast, Balear, Simon and Vojtas prove the following result without using

any set-theoretic assumptions (see 3.5 of [BSV]). (This result was independently

proved (but not published) by K. Kunen and by S. Shelah.)

1.3 Theorem. ßN contains a copy S o/£>(N,) such that clßNS is homeomorphic to

the one-point compactification of the space {a G /2Z)(N,): there exists A c F(SX) such

that \A\ < N0 anda G clßD(S , A}. In particular, S is not C*-embedded in ßN.

Thus if c = 2Nl, ßN contains two homeomorphic subspaces, one C*-embedded in

ßN and the other not.

1.4 Definition. Let a2 be a topological property.

(a) A space A has the absolute C*-embedding property for 3P if, whenever S is a

C*-embedded subspace of A, S has a3 , and F is a subspace of A that is

homeomorphic to S, then F is C ""-embedded in A.

(b) A space A has the absolute C*-embedding property if A has the absolute

C *-embedding property for 9> for every a2.

Thus ßN has the absolute C*-embedding property if CH is assumed, but does not

have it if it is assumed that c = 2s'. This raises the question of whether ßN has the

absolute C*-embedding property if c < 28'. In §2 we show the answer is "no"; in

fact, we prove the following, which is the main result of this paper.

1.5 Theorem. The following are equivalent:

(a) CH,

(b) ßN has the absolute C*-embeddingproperty.

In §3 we produce examples of some topological properties a3 such that ßN has the

absolute C *-embedding property for @ iff c < 2*1.

2. C*-embedding in ßN when CH fails. In this section we prove 1.5. Recall that a

space A is a P-space if its Gs-sets are open. See [GJ or Wa] for basic information on

these spaces; note particularly that F-spaces have an open base of clopen sets.

Denote by 38(X) the set of clopen subsets of a space A. The following theorem is

implicitly stated and proved in §2 of [DvM]. We include a proof for completeness.

2.1 Theorem. Let X be a P-space for which \3ê(X)\ < c. Then ßX can be embedded

in ßN.

Proof. Note that if \3ß(X)\ «s c then \3ä(ßX)\ < c. Since ßX is zero-dimensional,

standard "evaluation map" techniques show that ßX can be embedded in {0,1}',

where {0,1} is the two-point discrete space. The argument in §2 of [DvM] then

shows that ßX can be embedded in the absolute F({0,1}') of (0,1}£ (see [Wa,

Chapter 10, or Wo2] for a discussion of absolutes). Since F({0,1}C) is separable and
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extremally disconnected (since {0,1}' is separable), it can be embedded in ßN (see

[E]).    D
2.2 Definition. For each ordinal a, define L(a) to be the topological space whose

underlying setisa + l\{\Ga + l:\isa limit ordinal of countable cofinality},

and which has the subspace topology inherited from the order topology on a + 1.

(Here, as usual, a + 1 is thought of as the set of ordinals no greater than a.)

The space F(w2) has been previously used—see [vD or D], for example—to solve

problems similar to the ones discussed herein. We collect some known properties of

L(a2) in the following

2.3 Proposition, (a) L(a) is a Lindelof P-space for every a (the proof is identical to

that indicated in [vD] for the case a = io2).

(b) Let T = F(w2)\ {co2}. Then T is a dense C-embedded subspace of L(w2) and

vT= L(«2)(9Lo/[GJ]).

(c)|^(F)| = |^(L(W2))| = c-N2[vD].

We ' need a special case of the following, which is (as indicated below) an

immediate consequence of known results.

2.4 Lemma. Let a and ß be two ordinals. Then L(a) X L(ß) is a Lindelof space.

Proof. If Y is a space, let Ys denote the space whose underlying set is that of Y,

and for which the Gs-sets of Y form an open base. It is easy to see that L(a) X L(ß)

is homeomorphic to[(a + l)X(/}+l)]s, where a + 1 and ß + 1 are given the

usual order topology. It is known that if Y is a compact scattered space, then Ys is

Lindelof; see, for example, p. 27 of [M]. Since (a + I) X (ß + \) is compact

scattered, the lemma follows.   D

2.5 Corollary. L(<o2) x L(w2) is Lindelof and \SS(L(u2) x F(w2))| = c • S2.

Proof. For the second claim, note that as F(w2) X L(w2) is Lindelof, every

clopen set of F(co2) X L(w2) is the union of countably many basic clopen sets of

L(w2) X L(w2)of the form ^ X F, where A, B g á?(L(«2)). Thus

|^(L(co2)xL(co2))|<(|^(L(to2))|x|^(L(co2))|)S°

= (c ■ X2f"    (follows from 2.3(c))

= c • S2.    D

Henceforth we denote the space L(u2) by L.

Proof of 1.5. (a) => (b). This is part of 1.1.

(b) => (a). Suppose CH fails. Let /= F © F (the direct sum of two copies of the

space F of 2.3(b)). Note that J is a F-space. By 2.3(c), \Sè (J)\ = S2 • c = c (as CH

fails). Hence, by 2.1, J can be C*-embedded in ßN.

Finite products of F-spaces are F-spaces (4K.6 of [GJ]), so, by 2.5, L X L is a

F-space and \38 (L X L)\ = c. Hence, by 2.1, ß(L X L) can be embedded in ßN.

Now ({w2} X L) U (L X {w2})\{(w2, w2)} = 7, is homeomorphic to J and is a

subspace of L X L. But (w2,w2) is in the L X L closure of the complementary

clopen sets {w2} XL and F x {w2} of /,, so Jx is not C*-embedded in L X L. Thus
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a homeomorph of J can be embedded in ßN in such a way that it is not

C*-embedded in ßN. Hence (b) fails.   D

3. What happens when c < 2Sl. We now show that for certain topological

properties £?, ßN has the absolute C""-embedding property for a2 iff c < 2S>.

Recall (see [B]) that a space A is 86-refinable if, for each open cover <€ of A, there

exists a countable collection [yn: n G N} of open covers of A, each refining <€, such

that for each jc g A there exists n(x) g N for which \{V g yn(x): x g V}\ < S0. A

space is S ¡-compact if it has no uncountable closed discrete subsets. The following

result of Aull appears in [A,].

3.1 Theorem. An ^¡-compact 86-refinable space is Lindelof.

An immediate consequence is the following

3.2 Theorem. The following are equivalent:

(a) c < 2*'.

(b) ßN has the absolute C*-embedding property for "normal 86-refinable".

Proof, (a) => (b). Let A and Y be homeomorphic normal ôfFrefinable subspaces

of ßN. If A is N,-compact, then, by 3.1, A is Lindelof. By 5.2 of [N], Lindelof

subspaces of F-spaces are C*-embedded, so A and Y are C*-embedded in ßN. If A

is not S,-compact, A contains a closed copy of .D(Ni). Since A is normal, this is

C*-embedded in A. Thus |C*(7)| = |C*(A)| > |C*(Z>(N,))| = 2s' > c =

\C*(ßN)\, so neither A nor Y is C*-embedded in ßN.

(b) => (a). If c = 2Kl, then as noted in §1, ßN contains two copies of F(X,), one

C""-embedded and the other not. Since F>(N,) is normal ôo-refinable, (b) fails.    D

Note that the space F of 2.3(b) is normal, so "50-refinable" cannot be dropped

from 3.2(b) above.

Although not directly connected to our previous work, the following related

results are of interest.

3.3 Lemma. Assume c < 2N'. Then a normal, 86-refinable weakly Lindelof space of

weight no greater than c is Lindelof.

Proof. It is a special case of 2.4 of [CH] that if A is weakly Lindelof, then

|C*( A)| < w(x)*°, where w(x) denotes the weight of A (the least cardinality of an

open base of A). Thus \C*(X)\ = c as w(x) < c. Now argue as in the proof of 3.2.

D

3.4 Example. Assume that c = 2*1. By 2.1, ßN \ N contains a C*-embedded copy

S of IHNj). It follows that N U 5 is a normal (in fact, perfectly normal) separable

0-refinable space, but is not Lindelof. Note that w(N U S) ^ c as N D S çz ßN.

Thus the assumption "c < 2*1" in 3.3 cannot be dropped.

Let i%( A) denote the collection of regular closed subsets of A.

3.5 Theorem. The following are equivalent:

(a)c < 2s'.

(b) If X is normal and 86-refinable and \¿%(X)\ < c, then X is Lindelof.

(c) Each normal separable 6-refinable space is Lindelof.
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Proof, (a) => (b). If there were N, pairwise disjoint nonempty open subsets of A,

then \¿Ü(X)\ ^ 2s' > c. Thus A satisfies the countable chain condition and hence is

weakly Lindelof (see 1.1 of [Wo], for example). Since A is regular, w(X) < \9t(X)\.

Now apply 3.3.

(b) => (c). If A is separable, then |^(A)| < c, since if F is dense in A, then

A -* c\xA is a bijection from^(F) onto!%( A).

(c) => (a). Consider 3.4.    D

The authors wish to thank the referee for suggesting Example 3.4 and the inclusion

of 3.5(c).

Note that the space D(fAx) witnesses the fact that "weakly Lindelof" cannot be

deleted from the statement of 3.3. The space F of 2.3(b) witnesses that "¿¡fFrefinable"

cannot be deleted from 3.5(b), while Isbell's space ^ (see 51 of [GJ]), which is

f?-refinable, witnesses that "normal" cannot be deleted from 3.5(b).

4. Open questions. It seems plausible that a stronger result that 3.2 is true. In

particular, it is known (see [Z]) that a normal #-refinable space must (in the absence

of measurable cardinals, which obviously do not concern us here) be realcompact.

This together with 3.2 suggest the following

4.1 Question. Assume that c < 2H*. Does ßN have the absolute C*-embedding

property for realcompactness? In fact, does there exist a realcompact C ""-embedded

non-weakly-Lindelof subspace of ßN7

Note that the example J used in the proof of 1.5 is not realcompact. We have the

following partial result.

4.2 Theorem. Let X be a subspace of ßN that is a realcompact P-space. The

following are equivalent:

(a) Every subspace of ßN that is homeomorphic to X is C *-embedded in ßN.

(b) A is Lindelof.

Proof, (b) => (a). This follows from 5.2 of [N] (as quoted in 3.2).

(a) =» (b). Assume (b) fails. If |C*(A)| > c, then (a) fails and we are done, so

assume |C*( A)| = c. Since Ais a realcompact F-space but is not Lindelof, it follows

from Lemma 3D of [A2] that A contains complementary clopen subsets A and

X\A, neither of which is Lindelof. Arguing as in the proof of 5.3 of [DF], we see

that there exist compact subsets K and L of clßXA\X and c\ßx(X\A)\X,

respectively, such that the quotient space Y of A U K U F, formed by collapsing the

compact set K U L to a point, is a F-space containing A as a dense subspace. Then

|C*( Y)| = c, so obviously \St (Y)\ < c. Hence, by 2.1, there exists a copy of ßY in

ßN. As clYA n clr(X\A) # 0, this copy of ßY contains a copy of A that is not

C ""-embedded in ßN.   D

We are left with these problems:

4.3 Questions, (a) Suppose that c < 2N' and that Ais a realcompact F-space that is

C ""-embedded in ßN. Must A be Lindelof? (Since a weakly Lindelof F-space is

easily seen to be Lindelof, this is a special case of the second question in 4.1.)
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(b) Suppose that A is a realcompact space (or even a realcompact F-space) and

|/[A]| < S0 for every/G C*( A). Must A be Lindelof? (See [LR] for work related

to this.)
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