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ON C*-EMBEDDING IN 8N AND
THE CONTINUUM HYPOTHESIS

ALAN S. DOW! AND R. GRANT WOODS?

ABSTRACT. Let BN denote the Stone-Cech compactification of the natural numbers
N with the discrete topology. It is shown that the continuum hypothesis holds iff for
each pair X and Y of homeomorphic subspaces of BN, X is C*-embedded in BN iff
Y is. Related questions concerning C*-embedded subsets of BN are investigated
assuming the hypothesis 280 < 2%,

1. Introduction. All hypothesized topological spaces are assumed to be completely
regular and Hausdorff. Thus “space” will mean “completely regular Hausdorff
topological space”. For undefined notation and terminology see [GJ or Wa].

Let .S be a subspace of a space X. In general, the question of whether S is
C*-embedded in X depends not only on the topology of S but also on “how § is
placed in X . In other words, a space X may contain homeomorphic subspaces S
and T with S C*-embedded in X and T not. For example, Q and Q\ {0} are
homeomorphic dense subspaces of 8Q; the former is C *-embedded in SQ, the latter
is not (Q denotes the space of rationals and BQ its Stone-Cech compactification).
Another example is provided by the homeomorphic subspaces (-0,0] and (-1,0]
of R.

The situation can be different when one considers subspaces of SN. In fact, it is
consistent with the usual axioms of set theory that whether a subspace X of BN is
C*-embedded in BN depends only on the topology of X. Specifically, the following
theorem is 2.2 of [Wo]. Recall that a space X is weakly Lindelof if, for each open
cover € of X, there exists a countable subfamily # of € such that

X =cly[U{F: Fe #}].
We denote the continuum hypothesis by CH, and the cardinal 2% by c.

1.1 THEOREM. Assume CH. Then the following conditions on a subspace X of BN are
equivalent:

(a) X is C *-embedded in BN.

(®) [C*(X)] = c.

(¢) X is weakly Lindelof.
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However, if one assumes that ¢ = 2% (which also is consistent with the usual
axioms of set theory), the situation is known to be different. Denote the discrete
space of cardinality a by D(a) (thus N = D(X,)). The following result is due to
Efimov (see Remark 8 on p. 274 of [E)).

1.2 THEOREM. Assume ¢ = 2™, Then BN contains a C *-embedded copy of D(¥ ).

By contrast, Balcar, Simon and Vojta$ prove the following result without using
any set-theoretic assumptions (see 3.5 of [BSV]). (This result was independently
proved (but not published) by K. Kunen and by S. Shelah.)

1.3 THEOREM. BN contains a copy S of D(R,) such that clgnS is homeomorphic to
the one-point compactification of the space {a € BD(R)): there exists A € D(¥) such
that |A] < 8, and a € clgp ) A}. In particular, S is not C*-embedded in BN.

Thus if ¢ = 2™, BN contains two homeomorphic subspaces, one C *-embedded in
BN and the other not.

1.4 DEFINITION. Let 2 be a topological property.

(a) A space X has the absolute C *-embedding property for # if, whenever S is a
C*-embedded subspace of X, S has # , and T is a subspace of X that is
homeomorphic to S, then T is C *-embedded in X.

(b) A space X has the absolute C*-embedding property if X has the absolute
C *-embedding property for # for every #. '

Thus BN has the absolute C *-embedding property if CH is assumed, but does not
have it if it is assumed that ¢ = 2™ This raises the question of whether BN has the
absolute C*-embedding property if ¢ < 2% In §2 we show the answer is “no”; in
fact, we prove the following, which is the main result of this paper.

1.5 THEOREM. The following are equivalent:.
(a) CH,
(b) BN has the absolute C *-embedding property.

In §3 we produce examples of some topological properties 2 such that BN has the
absolute C *-embedding property for 2 iff ¢ < 2™

2. C*-embedding in BN when CH fails. In this section we prove 1.5. Recall that a
space X is a P-space if its Gg-sets are open. See [GJ or Wa] for basic information on
these spaces; note particularly that P-spaces have an open base of clopen sets.
Denote by #(X) the set of clopen subsets of a space X. The following theorem is
implicitly stated and proved in §2 of [DvM]. We include a proof for completeness.

2.1 THEOREM. Let X be a P-space for which |%B(X)| < ¢. Then BX can be embedded
in BN.

PROOF. Note that if | Z( X)| < c then |Z(BX)| < c. Since BX is zero-dimensional,
standard “evaluation map” techniques show that BX can be embedded in {0,1}°,
where {0,1} is the two-point discrete space. The argument in §2 of [DvM] then
shows that BX can be embedded in the absolute E({0,1}¢) of {0,1}¢ (see [Wa,
Chapter 10, or Wo,] for a discussion of absolutes). Since E({0,1}¢) is separable and
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extremally disconnected (since {0,1}¢ is separable), it can be embedded in SN (see
[ED. O

2.2 DEFINITION. For each ordinal a, define L(a) to be the topological space whose
underlying set is @ + 1\ {A € a + 1: A is a limit ordinal of countable cofinality},
and which has the subspace topology inherited from the order topology on « + 1.
(Here, as usual, a + 1 is thought of as the set of ordinals no greater than a.)

The space L(w,) has been previously used—see [vD or D], for example—to solve
problems similar to the ones discussed herein. We collect some known properties of
L(w,) in the following

2.3 PROPOSITION. (a) L(a) is a Lindelof P-space for every a (the proof is identical to
that indicated in [vD] for the case a = w,).

(b) Let T = L(w,)\{w,}. Then T is a dense C-embedded subspace of L(w,) and
vT = L(w,) (9L of [GJ]).

() |B(T)| = |Z(L(w,))| = ¢ - ¥, [vD].

We need a special case of the following, which is (as indicated below) an
immediate consequence of known results.

2.4 LEMMA. Let a and B be two ordinals. Then L(a) X L(f) is a Lindelof space.

PRrOOF. If Y is a space, let Y5 denote the space whose underlying set is that of Y,
and for which the Gg-sets of Y form an open base. It is easy to see that L(a) X L(f8)
is homeomorphic to [(a + 1) X (B + 1)],;, where a + 1 and B + 1 are given the
usual order topology. It is known that if Y is a compact scattered space, then Y is
Lindelof; see, for example, p. 27 of [M]. Since (a + 1) X (8 + 1) is compact
scattered, the lemma follows. O

2.5 COROLLARY. L(w,) X L(w,) is Lindelof and | B (L(w,) X L(w,))| = ¢ - 8.

Proor. For the second claim, note that as L(w,) X L(w,) is Lindeldf, every
clopen set of L(w,) X L(w,) is the union of countably many basic clopen sets of
L(w,) X L(w,) of the form A X B, where A, B € #(L(w,)). Thus

[B(L () X L)) < (128 (L(2))] x| (L())])""
= (c-8,)™ (follows from 2.3(c))
=c-N, O

Henceforth we denote the space L(w,) by L.

PROOF OF 1.5. (a) = (b). This is part of 1.1.

(b) = (a). Suppose CH fails. Let J = T @ T (the direct sum of two copies of the
space T of 2.3(b)). Note that J is a P-space. By 2.3(c), |2 (J)| = B, - ¢ = c (as CH
fails). Hence, by 2.1, J can be C *-embedded in SN.

Finite products of P-spaces are P-spaces (4K.6 of [GJ]), so, by 2.5, L X L is a
P-space and |# (L X L)| = c. Hence, by 2.1, B(L X L) can be embedded in SN.
Now ({w,} X L) U (L X {w; )\ {(w,, w,)} = J; is homeomorphic to J and is a
subspace of L X L. But (w,, w,) is in the L X L closure of the complementary
clopen sets {w,} X Land L X {w,} of J;,s0J, is not C*-embedded in L X L. Thus
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a homeomorph of J can be embedded in BN in such a way that it is not
C*-embedded in BN. Hence (b) fails. O

3. What happens when ¢ < 2%. We now show that for certain topological
properties 2, BN has the absolute C *-embedding property for 2 iff ¢ < 2™.

Recall (see [B]) that a space X is 88-refinable if, for each open cover € of X, there
exists a countable collection {v,: n € N} of open covers of X, each refining €, such
that for each x € X there exists n(x) € N for which [{V € v, x € V}| < 8, A
space is 8,-compact if it has no uncountable closed discrete subsets. The following
result of Aull appears in [A,].

3.1 THEOREM. An N ,-compact 80-refinable space is Lindelof.
An immediate consequence is the following

3.2 THEOREM. The following are equivalent:
(a) c < 2%,
(b) BN has the absolute C *-embedding property for “normal 86-refinable”.

PROOF. (a) = (b). Let X and Y be homeomorphic normal §6-refinable subspaces
of BN. If X is 8,-compact, then, by 3.1, X is Lindelof. By 5.2 of [N], Lindelof
subspaces of F-spaces are C *-embedded, so X and Y are C*-embedded in SN. If X
is not N,-compact, X contains a closed copy of D(X,). Since X is normal, this is
C*-embedded in X. Thus |C*(Y)| = |[C*(X)| = |[C*(D®R))| =2™ > ¢ =
|C *(BN)|, so neither X nor Y is C *-embedded in SN.

(b) = (a). If ¢ = 2™, then as noted in §1, BN contains two copies of D(¥,), one
C*-embedded and the other not. Since D(X,) is normal §6-refinable, (b) fails. O

Note that the space T of 2.3(b) is normal, so “86-refinable” cannot be dropped
from 3.2(b) above.

Although not directly connected to our previous work, the following related
results are of interest.

3.3 LEMMA. Assume ¢ < 2. Then a normal, 80-refinable weakly Lindelof space of
weight no greater than c is Lindelof.

PROOF. It is a special case of 2.4 of [CH] that if X is weakly Lindelof, then
|[C*(X)| < w(x)%e, where w(x) denotes the weight of X (the least cardinality of an
open base of X). Thus |C*(X)| = ¢ as w(x) < ¢. Now argue as in the proof of 3.2.
O

3.4 EXAMPLE. Assume that ¢ = 2% By 2.1, BN\ N contains a C *-embedded copy
S of D(N,). It follows that N U S is a normal (in fact, perfectly normal) separable
f-refinable space, but is not Lindelof. Note that wIN U S) < c as NU S C BN.
Thus the assumption “c < 2% in 3.3 cannot be dropped.

Let 2 ( X') denote the collection of regular closed subsets of X.

3.5 THEOREM. The following are equivalent:

(a) c < 2™,

(b) If X is normal and §0-refinable and |# (X )| < c, then X is Lindelof.
(c) Each normal separable 8-refinable space is Lindelof.
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PROOF. (a) = (b). If there were ¥, pairwise disjoint nonempty open subsets of X,
then |2 (X)| > 2™ > ¢. Thus X satisfies the countable chain condition and hence is
weakly Lindelof (see 1.1 of [Wo), for example). Since X is regular, w(X) < |2 (X)].
Now apply 3.3.

(b) = (¢). If X is separable, then |2(X)| < ¢, since if T is dense in X, then
A — cl A is a bijection from £ (T') onto Z( X).

(c) = (a). Consider 34. O

The authors wish to thank the referee for suggesting Example 3.4 and the inclusion
of 3.5(c).

Note that the space D(¥,) witnesses the fact that “weakly Lindelof” cannot be
deleted from the statement of 3.3. The space T of 2.3(b) witnesses that “86-refinable”
cannot be deleted from 3.5(b), while Isbell’s space ¥ (see 51 of [GJ]), which is
f-refinable, witnesses that “normal” cannot be deleted from 3.5(b).

4. Open questions. It seems plausible that a stronger result that 3.2 is true. In
particular, it is known (see [Z]) that a normal #-refinable space must (in the absence
of measurable cardinals, which obviously do not concern us here) be realcompact.
This together with 3.2 suggest the following

4.1 Question. Assume that ¢ < 2™. Does BN have the absolute C*-embedding
property for realcompactness? In fact, does there exist a realcompact C *-embedded
non-weakly-Lindelof subspace of SN?

Note that the example J used in the proof of 1.5 is not realcompact. We have the
following partial result.

4.2 THEOREM. Let X be a subspace of BN that is a realcompact P-space. The
following are equivalent:

(a) Every subspace of BN that is homeomorphic to X is C *-embedded in BN.

(b) X is Lindelof .

PROOF. (b) = (a). This follows from 5.2 of [N] (as quoted in 3.2).

(a) = (b). Assume (b) fails. If |C*(X)| > ¢, then (a) fails and we are done, so
assume |C*( X)| = c. Since X is a realcompact P-space but is not Lindelof, it follows
from Lemma 3D of [A,] that X contains complementary clopen subsets 4 and
X\ 4, neither of which is Lindelof. Arguing as in the proof of 5.3 of [DF], we see
that there exist compact subsets K and L of clgy A\ X and clgy(X\ A)\ X,
respectively, such that the quotient space Y of X U K U L, formed by collapsing the
compact set K U L to a point, is a P-space containing X as a dense subspace. Then
|C*(Y)| = ¢, so obviously |Z (Y)| < c. Hence, by 2.1, there exists a copy of BY in
BN. Ascly4 Ncl,(X\ 4) # @, this copy of BY contains a copy of X that is not
C*-embedded in SN. O

We are left with these problems:

4.3 Questions. (a) Suppose that ¢ < 2™ and that X is a realcompact P-space that is
C*-embedded in SN. Must X be Lindelof? (Since a weakly Lindelof P-space is
easily seen to be Lindelof, this is a special case of the second question in 4.1.)
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(b) Suppose that X is a realcompact space (or even a realcompact P-space) and
|fIX]] < 8, for every f € C*(X). Must X be Lindelof? (See [LR] for work related
to this.)
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