PETTIS INTEGRABILITY AND THE EQUALITY OF THE NORMS OF THE WEAK* INTEGRAL AND THE DUNFORD INTEGRAL

ELIZABETH M. BATOR¹

ABSTRACT. If (Ω, Σ, μ) is a perfect finite measure space and X is a Banach space, then it is shown that X^* has the μ -Pettis Integral Property if and only if

$$\|(\text{weak*}) - \int_{\Omega} f d\mu\| = \|(\text{Dunford}) - \int_{\Omega} f d\mu\|$$

for every bounded weakly measurable function $f: \Omega \to X^*$.

- **1. Introduction.** Let X be a Banach space with dual X^* and (Ω, Σ, μ) a finite measure space. If $f: \Omega \to X^*$ is bounded and weakly measurable, that is if $x^{**} \circ f$ is measurable for every $x^{**} \in X^{**}$, then it can easily be shown that
 - (i) for every $E \in \Sigma$, there exists $x_E^* \in X^*$ such that, for every $x \in X$,

$$x_E^*(x) = \int_E \hat{x} \circ f \, d\mu$$

and

(ii) for every $E \in \Sigma$, there exists $x_E^{***} \in X^{***}$ such that, for every $x^{**} \in X^{**}$,

$$x_E^{***}\big(x^{**}\big) = \int_E x^{**} \circ f \, d\mu.$$

The element x_E^* is called the weak * integral of f over E, denoted by $(w^*)-\int_E f d\mu$, and x_E^{***} is called the Dunford integral of f over E, denoted $(D)-\int_E f d\mu$. By definition, f is Pettis integrable if and only if $(D)-\int_E f d\mu \in X^*$.

A Banach space Y is said to have the μ -Pettis Integral Property, or μ -PIP if every bounded weakly measurable function $f \colon \Omega \to Y$ is Pettis integrable. Characterizations and properties of Pettis integrable functions, spaces with the μ -PIP, and integration of universally weakly measurable functions can be found in [1, 5, 6, 8-14, 16]. Clearly, X^* has the μ -PIP if and only if for every $f \colon \Omega \to X^*$ that is bounded and weakly measurable, (w^*) - $\int_E f d\mu = (D)$ - $\int_E f d\mu$ for every $E \in \Sigma$. We show that in fact if (Ω, Σ, μ) is perfect, then X^* has μ -PIP if and only if $\|(w^*)$ - $\int_\Omega f d\mu\| = \|(D)$ - $\int_\Omega f d\mu\|$ for every such function f.

2. Preliminary results. If A is a finite subset of a Banach space X and $\varepsilon > 0$, then we define

$$C_{A,\varepsilon} = \left\{ x^* \in B^* \colon |x^*(x)| < \varepsilon \text{ for every } x \in A \right\},$$
 where $B^* = \left\{ x^* \in X^* \colon |x^*| \leqslant 1 \right\}.$

Received by the editors November 18, 1984. Presented January 9, 1985 at the annual meeting of the AMS in Anaheim, California.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 28B05, 46G10.

Key words and phrases. Banach space, Pettis integral, Pettis norm, weak measurability.

¹Partially supported by Faculty Research Grant from North Texas State University.

266 E. M. BATOR

LEMMA 1. Let X be a Banach space and $x^{**} \in X^{**}$. Suppose for every $\eta > 0$ there exists a finite subset A of X^* and $\varepsilon > 0$ such that if $x^* \in C_{A,\varepsilon}$, then $|x^{**}(x^*)| < \eta$. Then $x^{**} \in X$.

PROOF. Let x_{α}^* be a net in $\frac{1}{2}B^*$ such that x_{α}^* converges weak* to x^* . Then $(x_{\alpha}^* - x^*) \in B^*$ and is eventually in $C_{A,\varepsilon}$ for every A, ε . Hence, $x^{**}(x_{\alpha} - x^*)$ converges to zero. Consequently, x^{**} is weak* continuous on B^* , and hence, $x^{**} \in X$. \square

A function f from a measure space (Ω, Σ, μ) to a dual Banach space X^* is weak* measurable if $\hat{x} \circ f$ is measurable for every $x \in X$. If f is weak* measurable we define the *Pettis norm of f* by

$$||f||_P = \sup_{x \in R} \int_{\Omega} |\hat{x} \circ f| d\mu,$$

where B is the closed unit ball of X. If f is bounded, we also define the operator T_f : $X \to L^1$ by $T_f(x) = \hat{x} \circ f$ for $x \in X$. It is clear that the operator norm of T_f , $||T_f||_{OP}$, is the same as the Pettis norm of f.

If $(f_{\alpha})_{\alpha \in \Gamma}$ is a net of weak* measurable functions and if Σ_{α} is a sub σ -algebra of Σ for every $\alpha \in \Gamma$, then we say $(f_{\alpha}, \Sigma_{\alpha})_{\alpha \in \Gamma}$ is a weak* martingale if

- (i) $\Sigma_{\alpha} \subset \Sigma_{\beta}$ if $\alpha < B$,
- (ii) for every $x \in X$, $E(\hat{x} \circ f_{\beta} | \Sigma_{\alpha}) = \hat{x} \circ f_{\alpha}$ if $\alpha < \beta$,

where $E(\cdot | \Sigma_{\alpha})$ is the usual conditional expectation operator with respect to Σ_{α} (see [3]). This just says that $(\hat{x} \circ f_{\alpha}, \Sigma_{\alpha})_{\alpha \in \Gamma}$ is a scalar-valued martingale for every $x \in X$.

We need the following rather deep result of Fremlin for perfect measure spaces [7]. (See [7, 15] for definitions and properties of perfect spaces.)

FREMLIN'S THEOREM. Let (Ω, Σ, μ) be a finite perfect measure space and $(f_n)_{n=1}^{\infty}$ be a sequence of measurable extended real-valued functions on Ω . Then either $(f_n)_{n=1}^{\infty}$ has a subsequence which converges a.e. or $(f_n)_{n=1}^{\infty}$ has a subsequence having no measurable pointwise cluster points.

We are now able to prove

PROPOSITION 2. Let (Ω, Σ, μ) be a perfect measure space and X a Banach space. Suppose $f \colon \Omega \to X^*$ is bounded and weak* measurable. Then the following are equivalent:

- (i) $T_i: X \to L^1(\mu)$ is a compact operator.
- (ii) If $(f_{\alpha}, \Sigma_{\alpha})_{\alpha \in \Gamma}$ is any bounded weak* martingale such that $\hat{x} \circ f_{\alpha}$ converges to $\hat{x} \circ f$ in $L^{1}(\mu)$ for every $x \in X$, then f_{α} converges to f in Pettis norm.
- (iii) There exists a net of bounded simple functions $(f_{\alpha})_{\alpha \in \Gamma}$, such that f_{α} converges to f in Pettis norm.

PROOF. Without loss of generality f takes its range in B^* .

(i) \Rightarrow (ii). Suppose T_f is compact and let $(f_\alpha, \Sigma_\alpha)_{\alpha \in \Gamma}$ be any bounded weak* martingale such that $\hat{x} \circ f_\alpha \to \hat{x} \circ f$ in $L^1(\mu)$. Letting $T_{f_\alpha} : X \to L^1(\mu)$ by $T_{f_\alpha}(x) = \hat{x} \circ f_\alpha$, we note that T_{f_α} converges to $T_f(x)$ in $L^1(\mu)$ and $T_{f_\alpha}(x) = E(\hat{x} \circ f | \Sigma_\alpha)$. It

suffices to show that $T_{\ell}(x)$ converges to $T_{\ell}(x)$ uniformly on B, as this says

$$\lim_{\alpha} \sup_{x \in B} \|T_{f_{\alpha}}(x) - T_{f}(x)\|_{L^{1}} = 0, \text{ or }$$

$$\lim_{\alpha} \sup_{x \in B} \int_{\Omega} |\hat{x} \circ f_{\alpha} - \hat{x} \circ f| d\mu = 0.$$

Let $\varepsilon > 0$. Since T_f is compact, there exists $x_1, \ldots, x_n \in B$ such that $T_f(B) \subset \bigcup_{i=1}^n \{g: \|g - T_f(x_i)\|_{L^1} < \varepsilon/3\}$. Choose β such that if $\alpha > \beta$ then

$$\left\|T_{f_{\alpha}}(x_i) - T_f(x_i)\right\|_{L^1} < \varepsilon/3$$

for i = 1, ..., n. Let $x \in B$ and let x_i be such that $||T_f(x) - T_f(x_i)|| < \varepsilon/3$. We note that $E(\cdot | \Sigma_\alpha)$ is an L^1 contraction [3]. Then if $\alpha > \beta$,

$$\begin{aligned} & \left\| T_{f_{a}}(x) - T_{f}(x) \right\|_{L^{1}} \\ & \leq & \left\| T_{f_{a}}(x) - T_{f_{a}}(x_{i}) \right\|_{L^{1}} + \left\| T_{f_{a}}(x_{i}) - T_{f}(x_{i}) \right\|_{L^{1}} + \left\| T_{f}(x_{i}) - T_{f}(x) \right\|_{L^{1}} < \varepsilon. \end{aligned}$$

(ii) \Rightarrow (iii). It suffices to show that there exists a bounded weak* martingale $(f_{\alpha}, \Sigma_{\alpha})_{\alpha \in \Gamma}$ such that f_{α} is simple for every $\alpha \in \Gamma$, and $\hat{x} \circ f_{\alpha} \to \hat{x} \circ f$ in L^1 for every $x \in X$.

Let Π be the set of finite partitions of Ω into elements of Σ directed by refinement. If $\pi \in \Pi$, let Σ_{π} be the finite σ -algebra generated by the elements of π and let

$$f_{\pi} = \sum_{A \in \pi} \frac{(\mathbf{w}^*) - \int_A f \, d\mu}{\mu(A)} \chi_A.$$

It is clear that $(f_{\pi}, \Sigma_{\pi})_{\pi \in \Pi}$ is a weak* martingale, each f_{π} is simple and the fact that $\hat{x} \circ f_{\pi} \to \hat{x} \circ f$ in $L^{1}(\mu)$ follows from scalar-valued martingale convergence theorems [3].

(iii) \Rightarrow (i). Suppose $(f_{\alpha})_{\alpha \in \Gamma}$ is a net of simple functions converging to f in Pettis norm. Then $T_{f_{\alpha}}$ converges to T_{f} in operator norm. Since $T_{f_{\alpha}}$ is a finite rank operator for each α , T_{f} is compact. \square

The following was first observed by Stegall [8].

PROPOSITION 3. If (Ω, Σ, μ) is a perfect finite measure space and $f: \Omega \to X^*$ is bounded and weakly measurable, then $T_f: X \to L^1$ is compact. Hence there exists a net of simple functions converging to f in Pettis norm.

PROOF. Let $(x_n)_{n=1}^{\infty}$ be bounded in X. Suppose $(\hat{x}_n \circ f)_{n=1}^{\infty}$ does not have an a.e. convergent subsequence. By Fremlin's theorem, there is a subsequence $(\hat{x}_{n_j} \circ f)_{j=1}^{\infty}$ having no measurable pointwise cluster points. Let x^{**} be a weak* cluster point of $(\hat{x}_{n_j})_{j=1}^{\infty}$ in X^{**} . Hence $x^{**} \circ f$ is a pointwise cluster point of $(\hat{x}_{n_j} \circ f)_{j=1}^{\infty}$ and is therefore nonmeasurable. This contradicts the weak measurability of f. Hence some subsequence must converge a.e. and by boundedness this subsequence must converge in $L^1(\mu)$. \square

268 E. M. BATOR

3. Main result. Putting together the pieces from §2 yields

THEOREM 4. If (Ω, Σ, μ) is a perfect measure space and X is a Banach space, then X^* has μ -PIP if and only if for every $f: \Omega \to X^*$ that is bounded and weakly measurable

$$\left\| (\mathbf{w}^*) \cdot \int_{\Omega} f \, d\mu \right\| = \left\| (\mathbf{D}) \cdot \int_{\Omega} f \, d\mu \right\|.$$

In fact if f is not Pettis integrable, then for some $E \in \Sigma$ and $\alpha > 0$ there exists a sequence of simple functions $(f_n)_{n=1}^{\infty}$ such that

$$\left\| (\mathbf{w}^*) - \int_E f - f_n d\mu \right\| \to 0 \quad \text{but } \left\| (\mathbf{D}) - \int_E f - f_n d\mu \right\| > \alpha \quad \text{for every } n.$$

PROOF. Of course if f is Pettis integrable then these two norms are the same. Conversely, let $f: \Omega \to X^*$ be bounded and weakly measurable. Without loss of generality, f takes its range in B^* . By Lemma 1, it suffices to show that for every $E \in \Sigma$ and $\eta > 0$ there exists a finite subset A of X^* and $\varepsilon > 0$ such that $|\int_E x^{**} \circ f \, d\mu| < \eta$ whenever $x^{**} \in C_{A,E}$.

Let $E \in \Sigma$ and $\eta > 0$. Let $f_E = f\chi_E$. Choose by Proposition 3 a simple function h such that $||f_E - h||_P < n/2$. Note then by hypothesis

$$\left\| (\mathbf{D}) - \int_{\Omega} (f_E - h) d\mu \right\| = \left\| (\mathbf{w}^*) - \int_{\Omega} (f_E - h) d\mu \right\| \le \|f_E - h\|_P < \eta/2.$$

Hence letting A be the range of h and $\varepsilon = \eta/2$, we see that if $x^{**} \in C_{A,\varepsilon}$, then

$$\left| \int_{E} x^{**} \circ f \, d\mu \right| \leq \left| \int_{\Omega} x^{**} \circ (f_{E} - h) \, d\mu \right| + \left| \int_{\Omega} x^{**} \circ h \, d\mu \right|$$
$$< \left\| (D) - \int_{\Omega} (f_{E} - h) \, d\mu \right\| + \eta/2 < \eta.$$

This proves the first assertion. To prove the second, we know that if f is bounded and weakly measurable, we can always find a sequence of simple functions (f_n) such that $\|(\mathbf{w}^*)-\int_{\Omega}(f-f_n)\|$ converges to zero. If there did not exist an $\alpha>0$ such that $\|(\mathbf{D})-\int_{\Omega}(f-f_n)\|>\alpha$, then this would force f to be Pettis integrable as in the above argument. \square

The following example is due to Phillips and is discussed in detail by Geitz in [9 and 10]. Let (Ω, Σ, μ) be usual Lebesgue measure space and $l^{\infty}[0, 1]$ be the space of bounded functions with usual supremum norm. Sierpiński constructed a subset B of $[0, 1] \times [0, 1]$ such that

- (i) for every $t_0 \in [0, 1]$, $\{s: (s, t_0) \in B\}$ is countable, and
- (ii) for every $s_0 \in [0, 1]$, $\{t: (s_0, t) \notin B\}$ is countable.

It is shown in [10] that the function $f: [0,1] \to l^{\infty}[0,1]$ given by $[f(s)](t) = \chi_B(s,t)$ is bounded and weakly measurable but not Pettis integrable with respect to (Ω, Σ, μ) .

It is also shown that if e_{t_0} is the evaluation functional at t_0 on $l^{\infty}[0, 1]$, then from (i) we have

$$\int_{[0,1]} e_{t_0} f(s) \ d\mu(s) = \int_{[0,1]} \chi_B(s,t_0) \ d\mu(s) = 0.$$

Hence, $\|(\mathbf{w}^*) - \int_E f d\mu\| = 0$ for every $E \in \Sigma$. However, if $\beta \in \text{ba}[0, 1] = (l^{\infty}[0, 1])^*$ is such that β vanishes on countable sets and $\|\beta\| = 1$, then we have by (ii) that, for every $s_0 \in [0, 1]$,

$$\int_{[0,1]} f(s_0) d\beta = 1.$$

Hence, $\int_E \int_{[0,1]} f(s) d\beta d\mu(s) = \mu(E)$ for every $E \in \Sigma$, and thus $\|(D) - \int_E f d\mu\| = \mu(E)$ for every $E \in \Sigma$.

4. Observations and questions. Suppose $f \colon \Omega \to X^*$ is bounded and weak* measurable, that is $\hat{x} \circ f$ is measurable for every $x \in X$, such that T_f is weak compact. Hence, $T_f^{***} \colon X^{***} \to L^1(\mu)$. This will certainly, but not necessarily, be the case if f is weakly measurable. Since $\langle T_f^{***}(x^{***}), g \rangle = x^{***}((w^*) - \int_\Omega fg)$ for every $g \in L^\infty(\mu)$, there exists a function $h_{x^{***}} \in L^1(\mu)$ such that $x^{***}((w^*) - \int_\Omega fg \, d\mu) = \int_\Omega h_{x^{***}}g \, d\mu$ for every $g \in L^\infty(\mu)$. Note that if (x_β) is a net in X such that \hat{x}_β converges weak* to x^{***} , then clearly $x^{***} \circ f$ is a pointwise limit of $(\hat{x}_\beta \circ f)$, whereas $h_{x^{**}}$ is an $L^1(\mu)$ limit of $(\hat{x}_\beta \circ f)$. Consequently, for every x^{**} there exists a sequence $(x_n)_{n=1}^\infty$ in X such that $\hat{x}_n \circ f$ converges a.e. to $h_{x^{**}}$. If f is Pettis integrable, however, it must be the case that $x^{***} \circ f = h_{x^{***}}$ a.e. Hence we get

THEOREM 5. Let X be a Banach space and (Ω, Σ, μ) a finite measure space. Suppose $f: \Omega \to X^*$ is bounded and weakly measurable. Then f is Pettis integrable if and only if, for every $x^{**} \in X^{**}$, there exists a bounded sequence $(x_n)_{n=1}^{\infty}$ in X such that both of the following hold:

- (i) $\hat{x}_n \circ f$ converges a.e. to $x^{**} \circ f$,
- (ii) $\hat{x}_n((\mathbf{w}^*)-\int_E f d\mu)$ converges to $x^{**}((\mathbf{w}^*)-\int_E f d\mu)$ for every $E \in \Sigma$.

We observe that condition (i) above guarantees that $\|(\mathbf{w}^*)-\int f d\mu\| = \|(\mathbf{D})-\int f d\mu\|$. Hence we get the following corollary from Theorems 4 and 5:

COROLLARY 6. Let X be a Banach space and (Ω, Σ, μ) a perfect finite measure space. Then X^* has μ -PIP if and only if whenever $f: \Omega \to X^*$ is bounded and weakly measurable then, for every $x^{**} \in X^{**}$, there is a bounded sequence $(x_n)_{n=1}^{\infty}$ in X such that $\hat{x}_n \circ f$ converges to $x^{**} \circ f$ a.e.

Question. Is it possible to remove condition (ii) in Theorem 5?

REFERENCES

- 1. K. T. Andrews, Universal Pettis integrability, Preprint 1983.
- 2. E. M. Bator, Duals of separable Banach spaces, Ph. D. Thesis, Pennsylvania State University, 1983.
- 3. J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, No. 15, Amer. Math. Soc., Providence, R.I., 1977.
 - 4. N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
 - 5. G. A. Edgar, Measurability in a Banach space. I, Indiana Univ. Math. J. 26 (1976), 663-677.
 - 6. _____, Measurability in a Banach space. II, Indiana Univ. Math. J. 28 (1979), 559-580.
- 7. D. H. Fremlin, *Pointwise compact sets of measurable functions*, Manuscripta Math. 15 (1975), 219-242.
- 8. D. H. Fremlin and M. Talagrand, A decomposition theorem for additive set functions, with applications to Pettis integrals and ergodic means, Math. Z. 168 (1979), 177-242.

270 E. M. BATOR

- 9. R. F. Geitz, Geometry and the Pettis integral, Trans. Amer. Math. Soc. 269 (1982), 535-548.
- 10. _____, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86.
- 11. R. E. Huff, Remarks on Pettis integration, Preprint 1984.
- 12. L. H. Riddle and E. Saab, On functions that are universally Pettis integrable, Preprint 1983.
- 13. L. H. Riddle, E. Saab and J. J. Uhl, Jr., Sets with the weak Radon-Nikodym property in dual Banach spaces, Indiana Univ. Math. J. 32 (1983), 527-541.
- 14. L. H. Riddle and J. J. Uhl, Jr., Martingales and the fine line between Asplund spaces and spaces not containing a copy of e_1 , Proceedings, Martingale Theory in Harmonic Analysis and Banach Spaces, Cleveland, 1981 (J. A. Chao and W. A. Woyczynski, eds.), Lecture Notes in Math., vol. 939, Springer-Verlag, Berlin and New York.
 - 15. V. V. Sazonov, On perfect measures, Amer. Math. Soc. Transl. (2) 48 (1965), 229-254.
- 16. D. Sentilles and R. F. Wheeler, *Pettis integration via the Stonian transform*, Pacific J. Math. 107 (1983), 473-496.

DEPARTMENT OF MATHEMATICS, NORTH TEXAS STATE UNIVERSITY, DENTON, TEXAS 76203