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PETTIS INTEGRABILITY AND THE EQUALITY OF THE NORMS

OF THE WEAK* INTEGRAL AND THE DUNFORD INTEGRAL

ELIZABETH M. BATOR1

Abstract. If (fi, 2, /x) is a perfect finite measure space and A' is a Banach space,

then it is shown that X* has the /i-Pettis Integral Property if and only if

(weak*)-/" fdy.\\=   (Dunford)-( fdJ
II •'ß        II     II •'ß        II

for every bounded weakly measurable function/: Q -* X*.

1. Introduction. Let A be a Banach space with dual X* and (ß, 2, p) a finite

measure space. If /: Í2 -» X* is bounded and weakly measurable, that is if x** ° /is

measurable for every x** g A**, then it can easily be shown that

(i) for every E g 2, there exists xE g X* such that, for every x g X,

xE(x) = ( x°fdp

and

(ii) for every E g 2, there exists xE** g X*** such that, for every x** g A**,

x***(x**) = /  x**°fdp.
JE

The element xE is called the wea/c* integral of f over E, denoted by (v/*)-jEfdp, and

xE** is called the Dunford integral of f over E, denoted (D)-fEfdp. By definition,/is

Pettis integrable if and only if (D)-jEfdp G X*.

A Banach space Y is said to have the p-Pettis Integral Property, or p-PIP if every

bounded weakly measurable function /: Í2 -» Y is Pettis integrable. Characteriza-

tions and properties of Pettis integrable functions, spaces with the p-PIP, and

integration of universally weakly measurable functions can be found in [1,5,6,8-

14,16]. Clearly, X* has the p-PIP if and only if for every/: fi -» X* that is bounded

and weakly measurable, (w*)-/£/c/p = (D)-JEfdp for every E g 2. We show that

in fact if (Q, 2, p) is perfect, then X* has p-PIP if and only if ||(w*)-/a/rfp|| =

||(D)-/ß/i/p|| for every such function/.

2. Preliminary results. If A is a finite subset of a Banach space X and e > 0, then

we define

CA e = [x* G B*: \x*(x)\ < e for every x G A),

where B* = {x* g A*: ||jc*|| < 1}.
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Lemma 1. Let X be a Banach space and x** g A**. Suppose for every tj > 0 there

exists a finite subset A of X* and e > 0 such that if x* g CA e, then \x**(x*)\ < r\.

Thenx** g X.

Proof. Let x* be a net in \B* such that x* converges weak* to x*. Then

(x* - x*) g B* and is eventually in CA e for every A, e. Hence, x**(xa - x*)

converges to zero. Consequently, x** is weak* continuous on B*, and hence,

x** G X.    D

A function / from a measure space (B, 2, p) to a dual Banach space A* is weak*

measurable if x ° fis measurable for every x g A. If/is weak* measurable we define

the Pettis norm of f by

p = sup   /   \x°f\dp,

where B is the closed unit ball of A. If /is bounded, we also define the operator Ta

X -» Ü by Tf(x) = x °/for x g X. It is clear that the operator norm of Tf, ||7}||OP,

is the same as the Pettis norm of/.

If(/a)aerisa net of weak* measurable functions and if 2 a is a sub a-algebra of 2

for every a g T, then we say (/„, 20)„er is a weak* martingale if

(i)2ac2^ifa</?,

(ii) for every x g X, E(x ° /J2J = * ° fa if a < /3,

where E(- |2a) is the usual conditional expectation operator with respect to 2a (see

[3]). This just says that (x ° fa, 2a)aer is a scalar-valued martingale for every x g X.

We need the following rather deep result of Fremlin for perfect measure spaces

[7]. (See [7, 15] for definitions and properties of perfect spaces.)

Fremlin's Theorem. Let (B, 2, p) be a finite perfect measure space and (/„)"= i be

a sequence of measurable extended real-valued functions on B. Then either (/„)jf_i has

a subsequence which converges a.e. or (/„)™=1 has a subsequence having no measurable

pointwise cluster points.

We are now able to prove

Proposition 2. Let (B, 2, p) be a perfect measure space and X a Banach space.

Suppose f: B -» X* is bounded and weak* measurable. Then the following are

equivalent:

(i) T¡: X —> Ll(p) is a compact operator.

(ii) // (/„, 2a)aer is any bounded weak* martingale such that x ° fa converges to

x » fin L1(p)for every x G X, then fa converges to f in Pettis norm.

(iii) There exists a net of bounded simple functions (fa)a<£r; such that fa converges to

f in Pettis norm.

Proof. Without loss of generality/takes its range in B*.

(i) => (ii). Suppose Tf is compact and let (fa, 2a)aGf be any bounded weak*

martingale such that Jc °/Q -» x ° f in L1(p). Letting Tf : X -» Ll(p) by Tfi[x) =

x ° fa, we note that Tf converges to Tf(x) in Ll(p) and 7}(jc) = F(x°/|2a). It
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suffices to show that 7}/jc) converges to Tf(x) uniformly on B, as this says

lim sup || 7^( jc) - 7^(x)|| , = 0, or

lim sup   /   Jjc ° fa - x °f\dp = 0.
"     reí Ja

Let e > 0. Since Tf is compact, there exists xx,...,xn g B such that Tf(B) c

Uf=i{g: ||g - 7}(*,)IL> < e/3}. Choose ß such that if a > ß then

¡Tfm(x,) - Tf(x,)\\l} < e/3

for i = 1,...,«. Let xe5 and let x, be such that ||7}(jc) - 7}(x;)|| < e/3. We note

that E(- |2a) is an Ü contraction [3]. Then if a > ß,

iw - win
<¡Tfm(x) - Tfa(Xi)\\Ll +\\T¿x,) - Tf(xi)\\û+\\Tf(x,) - Tf(x)\\L¡ < e.

(ii) =» (iii). It suffices to show that there exists a bounded weak* martingale

(/„, 2„)aer such that/a is simple for every a g T, and x ° fa -* x » /in L1 for every

x G A.

Let IT be the set of finite partitions of B into elements of 2 directed by

refinement. If it g n, let 2„ be the finite a-algebra generated by the elements of -n

and let

(w*)-/,/¿p
h L   äa)   Xa-

It is clear that (/„, 2w)„6n is a weak* martingale, each/, is simple and the fact

that x o /„. -* x ° f in LY(p) follows from scalar-valued martingale convergence

theorems [3].

(iii) => (i). Suppose (fa)a<Er 1S a net OI simple functions converging to /in Pettis

norm. Then 7} converges to F, in operator norm. Since T^ is a finite rank operator

for each a, 7^ is compact.   D

The following was first observed by Stegall [8].

Proposition 3. // (B, 2, p) is a perfect finite measure space and /: B -> A* is

bounded and weakly measurable, then Tf X -» Ll is compact. Hence there exists a net

of simple functions converging tofin Pettis norm.

Proof. Let (x„)"=1 be bounded in X. Suppose (xn °/)^=1 does not have an a.e.

convergent subsequence. By Fremlin's theorem, there is a subsequence (xn °/)°l,

having no measurable pointwise cluster points. Let x** be a weak* cluster point of

(xn )JLX in A**. Hence x** ° / is a pointwise cluster point of (xn ° f)JLx and is

therefore nonmeasurable. This contradicts the weak measurability of /. Hence some

subsequence must converge a.e. and by boundedness this subsequence must converge

in L\p).   D
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3. Main result. Putting together the pieces from §2 yields

Theorem 4. // (B, 2, p) is a perfect measure space and X is a Banach space, then

X* has p-PIP if and only if for every f: B -» X* that is bounded and weakly

measurable

(w*)-//¿p = (D)-/ fdp

In fact if f is not Pettis integrable, then for some F G 2 and a > 0 there exists a

sequence of simple functions (/„)"=1 such that

(V')-J f-fndl* 0    but (D)-( f-fndp > a   for every n.

Proof. Of course if / is Pettis integrable then these two norms are the same.

Conversely, let /: B -» A* be bounded and weakly measurable. Without loss of

generality, / takes its range in B*. By Lemma 1, it suffices to show that for every

£ g 2 and 17 > 0 there exists a finite subset A of A* and e > 0 such that

\jEx** ° f dp\ < t] whenever x** g CAe.

Let £ G 2 and tj > 0. Let fE = f\ E- Choose by Proposition 3 a simple function h

such that \\fE — h\\P < n/2. Note then by hypothesis

(D)-/ (fE-h)dp =  (w*)-/ (fE-h)dp < II/e - ¿II, < t)/2.

Hence letting A be the range of h and e = tj/2, we see that if x** g CAe, then

I ( x**ofdp\^\ f x**°(fE- h)dp\ + \( x**°hdp
\JE \      \JU I       I''«

<|(D)-Jf (/£-A)é7m|+ij/2<tí.

This proves the first assertion. To prove the second, we know that if / is bounded

and weakly measurable, we can always find a sequence of simple functions (/„) such

that ||(w*)-/a(/ - /„)|| converges to zero. If there did not exist an a > 0 such that

||(D)-/a(/ - /„)|| > a, then this would force/ to be Pettis integrable as in the above

argument.    D

The following example is due to Phillips and is discussed in detail by Geitz in [9

and 10]. Let (B, 2, p) be usual Lebesgue measure space and /°°[0,1] be the space of

bounded functions with usual supremum norm. Sierpihski constructed a subset B of

[0,1] X [0,1] such that

(i) for every t0 g [0,1], {s: (s, i0)efi) is countable, and

(ii) for every s0 g [0,1], {/: (s0, t) £ B} is countable.

It is shown in [10] that the function/: [0,1] -» /°°[0,1] given by [f(s)](t) = Xb(^ 0

is bounded and weakly measurable but not Pettis integrable with respect to (B, 2, p).

It is also shown that if et is the evaluation functional at /0 on /°°[0,1], then from

(i) we have

f     e,J(s) dp(s) = [     xBU,t0)dii(s) = 0.
J[0,1] •'[O.l]
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Hence, \\(w*)-fEfdp\\ = 0 for every £ g 2. However, if ß g ba[0,1] = (/°°[0,1])* is

such that ß vanishes on countable sets and ||ß|| = 1, then we have by (ii) that, for

every s0 G [0,1],

f     f(s0)dß = l.
•'[0.1]

Hence, jEJ[0XXf(s)dßdp(s) = p(E) for every £ g 2, and thus \\(D)-fEfdp\\ =

p(E) for every £ G 2.

4. Observations and questions. Suppose /: B -» X* is bounded and weak*

measurable, that is x ° / is measurable for every x G X, such that Tf is weak compact.

Hence, Tf**: X** -* Ll(p). This will certainly, but not necessarily, be the case if /is

weakly measurable. Since (Tf**(x**), g) = ***((w*)-/a/g) for every g g Lx(p),

there exists a function kx», g L*(p) such that x**((-w*)-fnfgdp) = j„hx,*gdp for

every g g Lx(p). Note that if (xß) is a net in A such that xß converges weak* to

x**, then clearly x** ° f is a pointwise limit of (xß° /), whereas /7X», is an Ll(p)

limit of (jc^ °/). Consequently, for every x** there exists a sequence (jc„)^=1 in A

such that !„ »/converges a.e. to hx,*. If/is Pettis integrable, however, it must be

the case that x** ° f = hx„ a.e. Hence we get

Theorem 5. Let X be a Banach space and (B, 2, p) a finite measure space. Suppose

f: B —> X* is bounded and weakly measurable. Then f is Pettis integrable if and only if,

for every x** g A**, there exists a bounded sequence (x„)^L, in X such that both of

the following hold:

(i) xn ° f converges a.e. to x** ° f,

(h) xn((w*)-JEfdp) converges to x**((w*)-jEf dp) for every £ g 2.

We observe that condition (i) above guarantees that ||(w*)-//ify,|| = \\(D)-jfdp\\.

Hence we get the following corollary from Theorems 4 and 5 :

Corollary 6. Let X be a Banach space and (B, 2, p) a perfect finite measure

space. Then X* has p-PIP if and only if whenever f: B —> X* is bounded and weakly

measurable then, for every x** g A**, there is a bounded sequence (x„)^L, in X such

that xn » f converges to x** ° f a.e.

Question. Is it possible to remove condition (ii) in Theorem 5?
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