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STRUCTURE OF BANACH ALGEBRAS A

SATISFYING Ax2 = Ax FOR EVERY x e A

J. ESTERLE AND M. OUDADESS

Abstract. We give a complete characterization of Banach algebras which satisfy the

condition Ax   = Ax for every x e A.

I. Introduction. C. Lepage [5] showed that a unital Banach algebra A, such that

Ax = Ax2 for every x e A, is semisimple and commutative. J. Duncan and A. W.

Tullo [4] proved that such an algebra is in fact finite dimensional (hence isomorphic

to C" for some n > 0). B. Aupetit obtained in [1] a theorem (Theorem 1, p. 58)

which extends the results of Lepage and Duncan-Tullo, but did not study the

nonunital case. In their survey paper [2] V. A. Belfi and R. S. Doran asked to what

extent the conclusion remains true for nonunital algebras. The latter author showed

[6] that the result of Lepage remains valid for Banach algebras with bounded

approximate identities.

We completely describe here the structure of Banach algebras A satisfying

Ax2 = Ax for every x e A. If A is semisimple, then A ~ C" for some n > 0. In

general A is isomorphic to C" ffi R (Theorem 3.2) for some n > 0, where R is the

radical of A and where AR = (0} (i.e., ax = 0 for every a e A and every x e R).

These conditions are necessary and sufficient. These results, which conclude a work

initiated by the second author in [6], were obtained in June 1983 at the University of

Montreal. The first author wishes to thank the Department of Mathematics of the

University of Montreal for their kind hospitality, and the authors wish to thank the

referee for his careful checking of the original manuscript.

II. The commutative semisimple case. Throughout this paper we set A e = A ffi Ce

if A is a nonunital Banach algebra, and Ae = A if A is a unital Banach algebra. The

spectrum Sp^x) of an element x of A (denoted by Sp(x) if no confusion is

possible) is by definition the spectrum of x in Ae, so that 0 e Sp^x) if A is not

unital.

Proposition 2.1. Let A be a commutative Banach algebra. If A possesses infinitely

many characters, then there exists x e A such that 0 is an accumulation point of

Sp(x).

Proof. It follows from a well-known result of Kaplansky that Sp(x) is infinite for

some x e A. To see this, choose for example a sequence Xn of distinct characters of

A and put Q„_m = {x e A\Xn(x) ¥= Xm(x)} for n ¥= m. Then Qn m is dense and

Received by the editors November 28. 1984.

1980 Mathematics Subject Classification. Primary 46J35: Secondary 46J20.

©  1986 American Mathematical Society

0002-9939/86 $1.00 + $.25 per page

91



92 J. ESTERLE AND M. OUDADESS

open in A, so ß = fl„#mS2„ „, is dense in A and all elements of ß have an infinite

spectrum. Then there exists X e C, x e A and a sequence {A,;} of elements of

Sp(x) such that Xn -» X as n -* oo, Xn + X for each n.

If y4 possesses a unit element e, then 0 is an accumulation point of Sp(x - Xe). If

A has no unit element, let X0 be the character of Ae such that A = Ker X0.

If A'o is an isolated point of the carrier space of Ae (this may happen for

nonunital and nonsemisimple Banach algebras with compact carrier space), it

follows from Shilov's idempotent theorem [3, p. 109, Theorem 5] that there exists an

idempotent p of A e such that X( p ) = 1 if X is a character on A e distinct from X0

and such that X0(p) = 0. Then p e A and X(p) = 1 for any character X on A. If

x is as above, then x — Xp has the desired property. Now assume that A is

nonunital and that X0 is not an isolated point of the carrier space of Ae. Put

ß„ = {y e A\0 < \X\ < 1/n for some X e Sp(y)} Ior n e N. Then ß„ is clearly

open for each n. Take z e A. Then X0(z) = 0 and since X0 is not isolated in the

carrier space of Ae, there exists a character X =£ XQ on Ae such that |ATz)| < 1/n.

If AYz) * 0, then z £ 0„. If X(z) = 0, there exists u e A such that X(u) * 0, and

z + eu e Qn if e is sufficiently small. So ß„ is dense in A. Again using the category

theorem, we see that il„eWß„^ 0 and elements of this set have the desired

property.

Proposition 2.2. Let A be a commutative Banach algebra and let x be an element

of A whose spectrum contains 0.

(i) // 0 ¿s not isolated in Sp(x), then Ax2 + Ax.

(ii) // 0 is isolated in Sp(x) and if A is semisimple, then Ax2 = Ax.

Proof, (i) If 0 is not isolated in Sp(x), there exists a sequence {Xn) of characters

of A such that Xn(x) -* 0 as n -» oo, and such that Xn(x) # 0 for each n.

If Ax2 = Ax there would exist u e A and v e A such that x2 = ux2 and

ux = vx2. Then X„(u) = 1, and |*„(w)| = \X„(x)\ ■ \X„(v)\ < \X„(x)\ ■ \\v\\ for each

n. As Xn(x) -» 0, when n -» oo, this is impossible.

(ii) Now assume that A is semisimple. If Sp(x) = {0}, then x = 0, so that

ylx2 = Ax. If Sp(x) contains at least two points, and if 0 is an isolated point of

Sp(x), then it follows from an easy version of Shilov's idempotent theorem [3, p. 36,

Proposition 9] that there exists an idempotent p of Ae such that X(p) = 0 for every

character X of A e vanishing at x and such that X( p ) = 1 for every character X of

Ae which does not vanish at x.

If A is not unital, then A = KerX0 for some character X0 of Ae, and X0(p) =

X0(x) = 0. So p e A, even if A is not unital.

Since A is semisimple, we have px = x. Set D = pA. Then D is a commutative

unital Banach algebra. Let <i> be a character on D. The map A: a —> <j>(ap) is a

character on Ae since p e pA and .Y|.D = $. So A^/?) = (¡>(p) = 1, and <j>(x) =

X(x) # 0. We thus see that x possesses an inverse x"1 in D, and ,4x = ,4/wc = Ax~l

■ x2 e Ax2. So Ax = Ax2, and the proposition is proved.

Corollary 2.3. Let A be a commutative semisimple Banach algebra. If Ax2 = Ax

for every x e A, then A is isomorphic to C" for some n > 0.
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Proof. It follows from Propositions 2.1 and 2.2 that A possesses only finitely

many characters. So the carrier space of A is compact (we exclude the obvious case

where A = {0}) and A is unital, since it is semisimple [3, p. 109, Corollary 6].

Denote by Xx,...,Xn the characters of A. There exists a family (e¡)¡^„ of idempo-

tents of A such that X¡(e¡) = 1, X^ef) = 0 for /' ¥= j and the map (Xx,..., Xn) -*

£¡'_i A,e, is an isomorphism from C" onto A (we could, in fact, use the Wedderburn

structure theorem [3, p. 134]).

Remark 2.4. Assertion (ii) of Proposition 2.2 might fail if A is not semisimple.

Consider a trivial Banach algebra R (where yz = 0 for every y, z e R). Put

B = R® Cf, where f2 = /, Rf = fR = 0 and put A = Be = R ffi Cf ffi Ce. Now
put u — f + y, where y e R, y # 0. Then u e Au, u2 = f. If X, p e C, z e R, we

have (Ae + pf + z)f2 = (X + p)f # / + y, so that Au # Au2, and Sp(u) = (0, 1}

so that 0 is an isolated point of Sp(w).

III. The general case.

Lemma 3.1. Let Abe a Banach algebra such that Ax2 = Ax for every x e A and let

R be the radical of A. Then:

(i) ax = 0 for each x e R and each a e A.

(ii) The quotient algebra A/R is commutative.

Proof. Let y be any element of R. We can find u, v e A such that y2 = uy2 =

vy3. So y2(e — vy) = 0. Since y e R, e — vy is invertible in A and y2 = 0. Then

Ay = Ay2 = {0}.

Now let tt: A -> ¿£(J() be any irreducible representation of A on an /1-module

JÍ. If dim Jt > 2, pick two linearly independent elements ex, e2 of Jt.

It follows from [3, p. 128, Corollary 5] that there exists u e A such that

Tr(u)ex = e2, Tr(u)e2 = 0. But there exists v e A such that Tr(v)e2 = e2. Now for

every we^we have

Tr(wu2)ex = Tr(w)ir(u)e2 = 0 =£ e2 = Tr(v)e2 = Tr(vu)ex.

So vu £ Au2, and we see that if Ax2 = Ax for each x e A then all irreducible

representations of A have dimension 1. Then tt(A) is isomorphic to C, so that

tt(x)tt(y) = Tr(y)TT(x) and xy — yx e Ker77 for all irreducible representations of

A and for every x, y e A. So xy - yx e R [3, p. 124, Proposition 14].

We now obtain the following theorem.

Theorem 3.2. Let A be a Banach algebra. Then Ax = Ax2 for every x e A if and

only if A = R ffi R, where AR = (0} and where B is isomorphic to C" for some n > 0.

Proof. Denote by R the radical of A. Then D = A/R is commutative, semisim-

ple, and satisfies Dx = Dx2 for every x e D. So D = C" for some n > 0. We omit

the trivial case D = {0} and we can find a family /,,..., /„ of idempotents of D

such that fx-fj = 0 if /' * j and such that D = Cfx® ■ ■ ■ ®C/„. Denote by tt:

A -* A/R the natural surjection and choose gx,...,gne A such that 7r(g,) =/,,

1 < / < n. Then tt(82 - g A = 0, g2 - g, e R and g2 - g3 = g,(g, - g2) = 0 by
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the lemma. So g2 = g3 = g4. Put e,■ = g2. Then *■(<?,) = w(g,) + Tr(g2 - g,) =

TT(g¡) = fi for each i < «. Also, Ti(e¡ej) = f¡f, = 0, so that ete, e R and ete¡ =

e¡(e¡ej) = 0 for ;' #_/. Denote by B the linear span of {ex,...,en). Then B = C",

B C) R = (0}. If x 6 yl we can write w(x) = A,/j + ■ ■ ■ +X„f„, so that x - A,e,

- • • • - A„e„ g Ä. So ^1 = £ ffi R and the condition of the theorem is necessary.

Conversely if A = B ffi R, where B and R satisfy the above condition, take a,

b e B and x, y e R. There exists d e B such that a = da2. We have

(bd + yd)(a + x)2 = (bd + yd)(a2 + xa) = bda2 + yda2

= ba + ya = (b + y)(a + x).

So Au = Au2 for every u e A, and the proof is complete.

Corollary 3.3. Let A be a semisimple Banach algebra. Then Ax = Ax2 for every

x e A if and only if A is isomorphic to C" for some n > 0.
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