STRUCTURE OF BANACH ALGEBRAS A SATISFYING $A x^{2}=A x$ FOR EVERY $x \in A$

J. ESTERLE AND M. OUDADESS

> AbSTRACT. We give a complete characterization of Banach algebras which satisfy the condition $A x^{2}=A x$ for every $x \in A$.
I. Introduction. C. Lepage [5] showed that a unital Banach algebra A, such that $A x=A x^{2}$ for every $x \in A$, is semisimple and commutative. J. Duncan and A. W. Tullo [4] proved that such an algebra is in fact finite dimensional (hence isomorphic to C^{n} for some $n \geqslant 0$). B. Aupetit obtained in [1] a theorem (Theorem 1, p. 58) which extends the results of Lepage and Duncan-Tullo, but did not study the nonunital case. In their survey paper [2] V. A. Belfi and R. S. Doran asked to what extent the conclusion remains true for nonunital algebras. The latter author showed [6] that the result of Lepage remains valid for Banach algebras with bounded approximate identities.

We completely describe here the structure of Banach algebras A satisfying $A x^{2}=A x$ for every $x \in A$. If A is semisimple, then $A \simeq C^{n}$ for some $n \geqslant 0$. In general A is isomorphic to $C^{n} \oplus R$ (Theorem 3.2) for some $n \geqslant 0$, where R is the radical of A and where $A R=\{0\}$ (i.e., $a x=0$ for every $a \in A$ and every $x \in R$). These conditions are necessary and sufficient. These results, which conclude a work initiated by the second author in [6], were obtained in June 1983 at the University of Montreal. The first author wishes to thank the Department of Mathematics of the University of Montreal for their kind hospitality, and the authors wish to thank the referee for his careful checking of the original manuscript.
II. The commutative semisimple case. Throughout this paper we set $A_{e}=A \oplus C e$ if A is a nonunital Banach algebra, and $A_{e}=A$ if A is a unital Banach algebra. The spectrum $\operatorname{Sp}_{A}(x)$ of an element x of A (denoted by $\operatorname{Sp}(x)$ if no confusion is possible) is by definition the spectrum of x in A_{e}, so that $0 \in \operatorname{Sp}_{A}(x)$ if A is not unital.

Proposition 2.1. Let A be a commutative Banach algebra. If A possesses infinitely many characters, then there exists $x \in A$ such that 0 is an accumulation point of $\mathrm{Sp}(x)$.

Proof. It follows from a well-known result of Kaplansky that $\operatorname{Sp}(x)$ is infinite for some $x \in A$. To see this, choose for example a sequence X_{n} of distinct characters of A and put $\Omega_{n, m}=\left\{x \in A \mid X_{n}(x) \neq X_{m}(x)\right\}$ for $n \neq m$. Then $\Omega_{n, m}$ is dense and

[^0]open in A, so $\Omega=\bigcap_{n \neq m} \Omega_{n, m}$ is dense in A and all elements of Ω have an infinite spectrum. Then there exists $\lambda \in C, x \in A$ and a sequence $\left\{\lambda_{n}\right\}$ of elements of $\operatorname{Sp}(x)$ such that $\lambda_{n} \rightarrow \lambda$ as $n \rightarrow \infty, \lambda_{n} \neq \lambda$ for each n.

If A possesses a unit element e, then 0 is an accumulation point of $\operatorname{Sp}(x-\lambda e)$. If A has no unit element, let X_{0} be the character of A_{e} such that $A=\operatorname{Ker} X_{0}$.

If X_{0} is an isolated point of the carrier space of A_{e} (this may happen for nonunital and nonsemisimple Banach algebras with compact carrier space), it follows from Shilov's idempotent theorem [3, p. 109, Theorem 5] that there exists an idempotent p of A_{e} such that $X(p)=1$ if X is a character on A_{e} distinct from X_{0} and such that $X_{0}(p)=0$. Then $p \in A$ and $X(p)=1$ for any character X on A. If x is as above, then $x-\lambda p$ has the desired property. Now assume that A is nonunital and that X_{0} is not an isolated point of the carrier space of A_{e}. Put $\Omega_{n}=\left\{y \in A|0<|\lambda|<1 / n\right.$ for some $\lambda \in \operatorname{Sp}(y)\}$ for $n \in N$. Then Ω_{n} is clearly open for each n. Take $z \in A$. Then $X_{0}(z)=0$ and since X_{0} is not isolated in the carrier space of A_{e}, there exists a character $X \neq X_{0}$ on A_{e} such that $|X(z)|<1 / n$. If $X(z) \neq 0$, then $z \in \Omega_{n}$. If $X(z)=0$, there exists $u \in A$ such that $X(u) \neq 0$, and $z+\varepsilon u \in \Omega_{n}$ if ε is sufficiently small. So Ω_{n} is dense in A. Again using the category theorem, we see that $\bigcap_{n \in N} \Omega_{n} \neq \varnothing$ and elements of this set have the desired property.

Proposition 2.2. Let A be a commutative Banach algebra and let x be an element of A whose spectrum contains 0 .
(i) If 0 is not isolated in $\mathrm{Sp}(x)$, then $A x^{2} \neq A x$.
(ii) If 0 is isolated in $\mathrm{Sp}(x)$ and if A is semisimple, then $A x^{2}=A x$.

Proof. (i) If 0 is not isolated in $\operatorname{Sp}(x)$, there exists a sequence $\left\{X_{n}\right\}$ of characters of A such that $X_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$, and such that $X_{n}(x) \neq 0$ for each n.

If $A x^{2}=A x$ there would exist $u \in A$ and $v \in A$ such that $x^{2}=u x^{2}$ and $u x=v x^{2}$. Then $X_{n}(u)=1$, and $\left|X_{n}(u)\right|=\left|X_{n}(x)\right| \cdot\left|X_{n}(v)\right| \leqslant\left|X_{n}(x)\right| \cdot\|v\|$ for each n. As $X_{n}(x) \rightarrow 0$, when $n \rightarrow \infty$, this is impossible.
(ii) Now assume that A is semisimple. If $\operatorname{Sp}(x)=\{0\}$, then $x=0$, so that $A x^{2}=A x$. If $\operatorname{Sp}(x)$ contains at least two points, and if 0 is an isolated point of $\mathrm{Sp}(x)$, then it follows from an easy version of Shilov's idempotent theorem [3, p. 36, Proposition 9] that there exists an idempotent p of A_{e} such that $X(p)=0$ for every character X of A_{e} vanishing at x and such that $X(p)=1$ for every character X of A_{e} which does not vanish at x.

If A is not unital, then $A=\operatorname{Ker} X_{0}$ for some character X_{0} of A_{e}, and $X_{0}(p)=$ $X_{0}(x)=0$. So $p \in A$, even if A is not unital.

Since A is semisimple, we have $p x=x$. Set $D=p A$. Then D is a commutative unital Banach algebra. Let ϕ be a character on D. The map $X: a \rightarrow \phi(a p)$ is a character on A_{e} since $p \in p A$ and $X \mid D=\phi$. So $X(p)=\phi(p)=1$, and $\phi(x)=$ $X(x) \neq 0$. We thus see that x possesses an inverse x^{-1} in D, and $A x=A p x=A x^{-1}$ $\cdot x^{2} \subset A x^{2}$. So $A x=A x^{2}$, and the proposition is proved.

Corollary 2.3. Let A be a commutative semisimple Banach algebra. If $A x^{2}=A x$ for every $x \in A$, then A is isomorphic to C^{n} for some $n \geqslant 0$.

Proof. It follows from Propositions 2.1 and 2.2 that A possesses only finitely many characters. So the carrier space of A is compact (we exclude the obvious case where $A=\{0\}$) and A is unital, since it is semisimple [3, p. 109, Corollary 6]. Denote by X_{1}, \ldots, X_{n} the characters of A. There exists a family $\left(e_{i}\right)_{i \leqslant n}$ of idempotents of A such that $X_{i}\left(e_{i}\right)=1, X_{i}\left(e_{j}\right)=0$ for $i \neq j$ and the map $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \rightarrow$ $\sum_{i=1}^{n} \lambda_{i} e_{i}$ is an isomorphism from C^{n} onto A (we could, in fact, use the Wedderburn structure theorem [3, p. 134]).

Remark 2.4. Assertion (ii) of Proposition 2.2 might fail if A is not semisimple. Consider a trivial Banach algebra R (where $y z=0$ for every $y, z \in R$). Put $B=R \oplus C f$, where $f^{2}=f, R f=f R=0$ and put $A=B_{e}=R \oplus C f \oplus C e$. Now put $u=f+y$, where $y \in R, y \neq 0$. Then $u \in A u, u^{2}=f$. If $\lambda, \mu \in C, z \in R$, we have $(\lambda e+\mu f+z) f^{2}=(\lambda+\mu) f \neq f+y$, so that $A u \neq A u^{2}$, and $\operatorname{Sp}(u)=\{0,1\}$ so that 0 is an isolated point of $\operatorname{Sp}(u)$.

III. The general case.

Lemma 3.1. Let A be a Banach algebra such that $A x^{2}=A x$ for every $x \in A$ and let R be the radical of A. Then:
(i) $a x=0$ for each $x \in R$ and each $a \in A$.
(ii) The quotient algebra A / R is commutative.

Proof. Let y be any element of R. We can find $u, v \in A$ such that $y^{2}=u y^{2}=$ $v y^{3}$. So $y^{2}(e-v y)=0$. Since $y \in R, e-v y$ is invertible in A and $y^{2}=0$. Then $A y=A y^{2}=\{0\}$.

Now let $\pi: A \rightarrow \mathscr{L}(\mathscr{M})$ be any irreducible representation of A on an A-module \mathscr{M}. If $\operatorname{dim} \mathscr{M} \geqslant 2$, pick two linearly independent elements e_{1}, e_{2} of \mathscr{M}.

It follows from [3, p. 128, Corollary 5] that there exists $u \in A$ such that $\pi(u) e_{1}=e_{2}, \pi(u) e_{2}=0$. But there exists $v \in A$ such that $\pi(v) e_{2}=e_{2}$. Now for every $w \in A$ we have

$$
\pi\left(w u^{2}\right) e_{1}=\pi(w) \pi(u) e_{2}=0 \neq e_{2}=\pi(v) e_{2}=\pi(v u) e_{1} .
$$

So $v u \notin A u^{2}$, and we see that if $A x^{2}=A x$ for each $x \in A$ then all irreducible representations of A have dimension 1 . Then $\pi(A)$ is isomorphic to C, so that $\pi(x) \pi(y)=\pi(y) \pi(x)$ and $x y-y x \in \operatorname{Ker} \pi$ for all irreducible representations of A and for every $x, y \in A$. So $x y-y x \in R$ [3, p. 124, Proposition 14].

We now obtain the following theorem.
Theorem 3.2. Let A be a Banach algebra. Then $A x=A x^{2}$ for every $x \in A$ if and only if $A=B \oplus R$, where $A R=\{0\}$ and where B is isomorphic to C^{n} for some $n \geqslant 0$.

Proof. Denote by R the radical of A. Then $D=A / R$ is commutative, semisimple, and satisfies $D x=D x^{2}$ for every $x \in D$. So $D \simeq C^{n}$ for some $n \geqslant 0$. We omit the trivial case $D=\{0\}$ and we can find a family f_{1}, \ldots, f_{n} of idempotents of D such that $f_{1} \cdot f_{j}=0$ if $i \neq j$ and such that $D=C f_{1} \oplus \cdots \oplus C f_{n}$. Denote by π : $A \rightarrow A / R$ the natural surjection and choose $g_{1}, \ldots, g_{n} \in A$ such that $\pi\left(g_{i}\right)=f_{i}$, $1 \leqslant i \leqslant n$. Then $\pi\left(g_{i}^{2}-g_{i}\right)=0, g_{i}^{2}-g_{i} \in R$ and $g_{i}^{2}-g_{i}^{3}=g_{i}\left(g_{i}-g_{i}^{2}\right)=0$ by
the lemma. So $g_{i}^{2}=g_{i}^{3}=g_{i}^{4}$. Put $e_{i}=g_{i}^{2}$. Then $\pi\left(e_{i}\right)=\pi\left(g_{i}\right)+\pi\left(g_{i}^{2}-g_{i}\right)=$ $\pi\left(g_{i}\right)=f_{i}$ for each $i \leqslant n$. Also, $\pi\left(e_{i} e_{j}\right)=f_{i} f_{j}=0$, so that $e_{i} e_{j} \in R$ and $e_{i} e_{j}=$ $e_{i}\left(e_{i} e_{j}\right)=0$ for $i \neq j$. Denote by B the linear span of $\left\{e_{1}, \ldots, e_{n}\right\}$. Then $B \simeq C^{n}$, $B \cap R=\{0\}$. If $x \in A$ we can write $\pi(x)=\lambda_{1} f_{1}+\cdots+\lambda_{n} f_{n}$, so that $x-\lambda_{1} e_{1}$ $-\cdots-\lambda_{n} e_{n} \in R$. So $A=B \oplus R$ and the condition of the theorem is necessary.
Conversely if $A=B \oplus R$, where B and R satisfy the above condition, take a, $b \in B$ and $x, y \in R$. There exists $d \in B$ such that $a=d a^{2}$. We have

$$
\begin{aligned}
(b d+y d)(a+x)^{2} & =(b d+y d)\left(a^{2}+x a\right)=b d a^{2}+y d a^{2} \\
& =b a+y a=(b+y)(a+x)
\end{aligned}
$$

So $A u=A u^{2}$ for every $u \in A$, and the proof is complete.
Corollary 3.3. Let A be a semisimple Banach algebra. Then $A x=A x^{2}$ for every $x \in A$ if and only if A is isomorphic to C^{n} for some $n \geqslant 0$.

References

1. B. Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Math., vol. 735, Springer-Verlag, Berlin, Heidelberg and New York, 1979.
2. V. A. Belfi and R. S. Doran, Norm and spectral characterizations in Banach algebras, Enseign. Math. (2) 26 (1980), 103-130.
3. F. F. Bonsall and J. Duncan, Complete normed algebras, Ergebnisse der Math. und ihrer Grenzgebiete, Springer-Verlag, Berlin and New York, 1973.
4. J. Duncan and A. Tullo, Finite dimensionality, nilpotents and quasinilpotents in Banach algebras, Proc. Edinburgh Math. Soc. Ser. 22 (1974), 45-46.
5. C. Le Page, Sur quelques conditions entrainant la commutativité dans les algèbres de Banach, C.R. Acad. Sci. Paris Ser. A 265 (1967), 235-237.
6. M. Oudadess, Commutativité de certaines algèbres de Banach, Rapports de Recherche du D.M.S., Univ. de Montreal, 1983, pp. 82-85.

Laboratoire associe au CNRS, U.E.R. de Mathematiques et d’Informatique, Universite de Bordeaux I, 351, Cours de la Liberation, 33405 Talence, France

Ecole Normale Superieure, Takkadoum, B.P. 5118, Rabat - Maroc

[^0]: Received by the editors November 28, 1984.
 1980 Mathematics Subject Classification. Primary 46J35: Secondary 46J20.

