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CYCLIC VECTORS FOR BACKWARD

HYPONORMAL WEIGHTED SHIFTS

SHELLEY WALSH1

Abstract. A unilateral weighted shift T on a Hubert space H is an operator such

that Ten = wne„+¡ for some orthonormal basis { e„ }¡f_ o and weight sequence

{ wh }?-o- "f we assume wn > 0, for all n, and let ß(n) = w0 ■ ■ ■ w/¡_¡ for n > 0 and

ß(0) = 1, then T is unitarily equivalent to/1-» zf on the weighted space H2(ß) of

formal power series E^_0/(«)z" such that T.^-0\f(n)\2[ß(n)]2 < oc. Regarding 7"

as multiplication for z on the space H2(ß), it is shown that, if wn T1 and/is analytic

in a neighborhood of the unit disk, then either/is cyclic for T* or/is contained in a

finite-dimensional 7"*-invariant subspace. This was shown—by different methods—

for the unweighted shift operator by Douglas, Shields, and Shapiro [2]. It is also

shown that every finite-dimensional 7"*-invariant subspace is of the form

((* -«,)"'   ■•(* -«*)"'H2(ß))X,

for some a,,... ,ak in the unit disk and «,,... ,nk positive integer.

1. Introduction and notation. Let U be the unilateral shift on the Hardy space H2.

It follows from Beurling's theorem that a function/is noncyclic for U* if and only if

f e (cpH2)-1 for some inner function tp. But this is not a very useful condition for

determining whether a given function is cyclic for U*. In [2], Douglas, Shields and

Shapiro give a much more useful characterization (Theorem 2.2.1), which has as one

of its consequences Theorem 2.2.4, which states that if / is analytic in a neighbor-

hood of the unit disk then/is either cyclic or a rational function. Since the functions

which are contained in a finite-dimensional i/*-invariant subspace are precisely the

rational functions, Theorem 2.2.4 can be restated as follows.

Theorem 0. If f is analytic in a neighborhood of the unit disk, then either f is cyclic

for U* or fis contained in a finite-dimensional U*-invariant subspace.

The main result of this paper is that this is true for any hyponormal weighted shift

with unit norm. This is proved in §2; in §3 the finite-dimensional invariant

subspaces for hyponormal weighted shifts are characterized.

Throughout this paper T will be a hyponormal weighted shift with unit norm. We

use the weighted space notation used in [3], and we assume that T is the operator on

H2(ß) defined by Tf = zf. If 5 is an operator, a(S), ap(S), and oäp(S) will denote
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its spectrum, point spectrum, and approximate spectrum, respectively. If/ e H2(ß),

then [/]* will be the smallest r*-invariant subspace containing/.

Since T is hyponormal with unit norm, we have wn|l, so [ß(n)]l/n -* 1. It

follows that any function in H2(ß) is analytic on the unit disk. If \a\ < 1 and « is a

nonnegative integer, let

k   =y j---{j~n + l)w-"zJ

'•"  h    Ißü)}2
Then Ka „ e H2(ß) and, for any /in H2(ß), we have

y-«

Since the function ^Ta>0 will be used particularly often, when it is convenient we will

call it Ka.

2. The main result.

Theorem 1. If T is a hyponormal unilateral weighted shift with unit norm and f is

analytic in a neighborhood of the unit disk, then either f is cyclic or f is contained in a

finite-dimensional T*-invariant subspace.

We prove this by way of the following lemmas.

Lemma 1. If\a\ < 1 andfe H2(ß), then

(i) (T* — a)f = 0 if and only if fis a constant multiple ofKa;

(ii)

{T* -"A^K"") = lJt~^YyK«"-' f°ra"yn>0-

Proof, (i) For any g in H2(ß), we have (g, (T* - ä)Ka) = <(z - a)g, Ka) = 0,

so (T* — a~)Ka = 0. Conversely, suppose (T* — a~)f = 0. Since the polynomials are

dense in H2(ß) and (T — a) is bounded below (by Proposition 8.13 in [1]), if g is in

H2(ß), then the function (g - g(a))/(z - a) is also in H2(ß). Thus if g e H2(ß),

then

<g,f)=(S~^](z-«)jyg(*)H2(a)(l,f)

g7_g(aa), (T* - ä)fj + g(«)<l, /) = g(a)(l, />.

Therefore/= (1, f)Ka.

(ii)Ifge H2(ß), then

(g,(T* - 5)(^*a,„)) = ((z - a)g, ^Ka^ = ±((z - a)gt\a)

^"^(«h/^T-^^-iV        °
(«-1)!6        v   '     \5' („-!)!
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Lemma 2. If M is an invariant subspace for T* then

ojT*\M)n{\z\<l} = ov(T*\M).

Proof. Let ä e aap(T*\M) with \a\ < 1. Then there exists a sequence of functions

{/„} in M such that \\f\\ = 1 and \\(T* - ä)/„|| - 0. Let /„ = cnKa + gn, where

g„ 1 Ka. Then ||(r* - S)gH\\ -+ 0. The subspace (T* - ë){Ka}± is the range of

T* - a, which is closed by Proposition 8.13 of [1], so T* - ä: {Ka}±->

(T* - a){Ka}x is invertible. This implies T* - ä is bounded below on {Ka}-1, so

||g„|| -» 0. Since 11/„| | and ||g„|| are bounded, the sequence {c„} is bounded, so it has

a convergent subsequence {c„k}. Let c = limlt^00cnj. Then /„ -» cKa, so ä e

op(T*\M).    a

Lemma 3. /// e H2(ß) and there is a constant C such that \\q(T*)f\\ < C\\q\\for all

polynomials q, then

°(T*\[f]*)n{\z\<l}=op(T*\[f].).

Proof. Let ä e a(7*|[/]+) with \a\ < 1. By Lemma 2, if ä e a^(T*\[/]„), then

ä e a (T* \[/]*), so assume 5 is in the compression spectrum. Then there exists a

nonzero function g in [/]* 9 (T* - ä)[/]*. Let g*(z) = g(z), and let {q„} be a

sequence of polynomials such that qn -* g* (in H2(ß)). Then

k(D/-i*(i,>)/ll<c||i),-ij-»o
as «, w -> oo, so (^(r*)/} converges. Let /¡ = lim^^^^ir*)/. Then /i G [/]+

and, for any nonnegative integer k, we have

{(T* - a)h, zk) = {h,(z- a)zk) =   lim (qn(T*)f,(z - a)zk)
n —* oo

=  lim </,(z - a)zkJJï)) = </,(z - «)z*g>
n~* oo

= ((r*-ä)r*V,g> = o,
so(r* - 5)/i = o.

If A = 0, then, for any nonnegative integer k, we have

0 = <A,z*>=   lim (qn(T*)f,zk)
n—* oo

=   lim (f,q„(z)zk) = </,gz*> = <r**/,g>,
n—* oo

so g J. [/]*, contradicting the assumption that g is a nonzero function in [/]*. Thus

Ä*0,so5eap(7*|[/U

Corollary 1. // T is subnormal andf e H°°(ß), then

°(r*|[/L)n{|z|<i}=ap(r*|[/y.

Proof. Let Mf be the operator on H2(ß) defined by Mfg = fg. Then Mf is

bounded. Let q be a polynomial and let q*(z) = q(z). Then since T is subnormal,

q*(T) is also subnormal, so, in particular, it is hyponormal, so

\\q(T*)f\\ = \\(q*(T))*fn\\q*(T)f\\

= \\q*(z)f\\<\\Mf\\\\q*\\ = \\Mf\\\\q\\.
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Lemma 4. Let f be a nonzero function in H2(ß), such that

A=0        [ß(k)\2

as n —> oo, for some R > 1. If 1/R < r < 1, then the intersection a(T*\[f]if) Pi {\z\

< r} is nonempty.

Proof.   Suppose   o(T*\[f]+) n {\z\ < r) = 0.   Then   (T*\{f]*)-X   exists   and

a«^/]*)1) c (|z| < l/r). Hence, lim,,^^IK3^*|[/]*)""||x/" < 1/r so, since \/r

< R, there exists N such that IKT1*!!/]*)""!!17" < R, for all n>N. Thus, for « > N,

wehave||(7,*|[/],|t)-"|| 4,,R". In particular,

\\f\\ = \\(T*\[f]*y"T*"f\\^R"\\T*"f\\,

so

ll/ll2 < R2ir*»/H2 = r2" t [^k,+ "!]4^k + ")l2 ■* °
*-o     [ß{k)\2

as « -» oo, contradicting the assumption that/is nonzero.    D

If/ e H2(ß) and R > 0, let/« be the function defined by/„(z) = f(Rz).

Lemma 5. Le?/g H2(ß)andR > \.IffR e H2(ß) and\a\ < 1, then

((T*-ä)f)ReH2(ß).

Proof. Let h = (T* - â)f. Then

h(n)=f(n + l)ßi"+.l) -âf(n),
ß(n)

so

E |A(w)fA2-[)8(«)]2 < 2 E [/*(« + i)]2|/(» + i)l R1"
n = 0 \ h = 0

+ I«|2E [ß(n)]2\f(n)\ R2"\<oo,
ii = 0 /

sohReH2(ß).    D

Lemma 6. //|«| < 1 and Ka„ e [(T* - ä)mf]„ then Ka,„ + m e [/],.

Proof.   By induction  it suffices to  show  that if Ka n e [(T* - ä)/]*,  then

*«.„ + i e [/]*• If if«,« e [(T* - 5)/]», then *„,„ e [f]„ so since

(i/«!)(r»-«)X,„ = ̂
(by Lemma 1), it follows that Ka e [/]„,. Let Q be the orthogonal projection from

[/]* to [/]* n {Ka}± ■ Since Ka n e [(T* - 5)/]*, there exists a sequence of

polynomials {qk} such that qk(T*)(T* - ct)f -> Ka „ (as k -» 00). Let /A =

Qqk(T*)f. Then/, e [/]* and (7* - a) A - Ka<a.
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The sequence {(1, fk)} is bounded, since |(1, fk)\ < \\fk\\ and T* - ais bounded

below on {K^1-. Hence, it has a convergent subsequence {(1,/,)}. Let d =

lim/^00(l,A.>.IfgG//2(/3),then

g~ g(«)
(sJk) = z — a

g - g(a)

z — a

g-g(u)Y
z — a

(z-a),fk\+(g(*),fkj)

,(T*-ä)fk\ + g(a)(l,fkj)

(a) + dg(a)

1

n + 1
g("^(a) + dg(a).

Thus/A; - (l/(n + l))Kan + l + dK a weakly as j -» oo, soKa,n + 1 g [/]«,.    D

Proof of Theorem 1. Let /be a function analytic in a neighborhood of the unit

disk and not contained in a finite-dimensional /'"'-invariant subspace. Then there

exists R > 1 such that/« g H2(ß).

Let q be a polynomial with q(z) = Y.k=Qakzk. Then

iwn/ii -
„=o    „=o     Lp(")J

= E
« = 0

£*^*->
A=0

lß(n)i

■,l{i\ak\[ß^\f\f(k + n)\)2[ß(n)Y
ii = 0 \ A: = 0

oo     /     N

<  E I   E \ak\2[ß(k)}
ii = 0 \ A=0

xÍ£|/(* + m)|'    1W,+ ""   ,

-wi2Ê £i/<* + <2 lw* + ")r

iu(«)r

ii = 0 A=0 [/3(^)]2[/3(n)]"

So to show that there exists a constant C such that ||9(T*)/|| < C\\q\\ for any

polynomial q, it is enough to show that

E     E   l/(* + «)l   ̂ ^TT—   L7<».
ii = 0 A = 0 [/3(^)]1/3(«)]'

Let  1 < R' < R.  Then there is a constant  Q  such  that l/ß(n) < C^Ä')" «c

Cx(R')" + k for all nonnegative integers« and k. Then since [/?(£ + h)]2/[/3(A:)]2 < 1,
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we get

"<* + ")l2r[f(^t")]!i2 < C^* + "J^«* + «)]2(^')2a + ")-
[/3(^)]2[/3(")]2

Since R' < R, there is a constant C2 such that (« + l)(R')2" < C2Ä2", so

E   i\f{k + n)\2[ß(k + n)]\R'fk + n)
n = 0 A = 0

=  I. in + \)\f{n)\2[ß(n)]2(R')2"
ii = 0

<  El/(«)l [/5(«)]2C2/c2"<oo.
n = 0

Fix 1/R < r < 1 and let 1//- < Rx < R2 < R. Then for sufficiently large «, we

have |/('«)| < 1/R\, so for such an n,

^£ia*±^|Wt + .)|-<Jt.£Ifl*±^(.L'*M"

«2/   tto     [/S(lc)]2    l«2l        l*jl   Ä1*..

as « —> oo, so by Lemmas 3 and 4, the intersection {\z\ < r} C\ ap(T*\[f]*) is

nonempty.

Choose a0 such that a0 e {\z\ < r) n a (r*|[/]*). If a,, /c = 0,.. .,m — 1, are

defined, let fm = (T* - <x0) • ■ ■ (T* - am__x)f. Since / is not contained in a finite-

dimensional r*-invariant subspace, it follows that fm ¥> 0. By Lemma 5 we have

(/m)« G H2(ß) so, again by Lemmas 3 and 4, the intersection {\z\ < r) n

°p(T*\[fm]*) is nonempty, so choose am such that âm e {\z\ < r] n ffp(T*|[/m]*).

In this way we obtain a sequence {ak} of points in the disk {\z\ < r}.

Suppose a occurs in {ak } at least j times, and let A^ be the positive integer such

that the/th occurrence of a in ( ak} is aN. Then

' N-l

Ka e [fN ç[(7--«y-7].,n (2-* - «*)/
. A = 0

so, by Lemma 6, the function Kaj_x 1S m [/]*> and g(y_1)(«) = 0 f°r aU g m [/]* •

Since this holds for any a occurring in {ak ) and any j such that a occurs at least j

times in {ak), any function g in [/]* has zeros at each ak, with multiplicities

according to the number of occurrences in {otk}. Since {ctk} is an infinite sequence

contained in {|z| < r), this implies [/]* = (0), so/is cyclic.

3. Finite-dimensional T*-invariant subspaces.

Theorem 2. Every finite-dimensional T*-invariant subspace is of the form

{(z-ax)k>---(z-an)k"H(ß)Y

for some ax,...,anin the open unit disk and kx,...,kn positive integers.
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Proof. Let M be a finite-dimensional r*-invariant subspace. Then T*\M is an

operator on the finite-dimensional space M, so it can be put in Jordan form. Thus M

is the direct sum of invariant subspaces Y such that T* | Y has Jordan form

a

1

10

0

1   ä

for some a in C, and since 11y*11 = 1, we have \a\ < 1. This means that Y has a basis

/0,... ,fk such that (T* - a)f0 = 0 and (T* - 5)/ = f¡_x for / > 0. I will show that

/-=  ¿7f<l,/,-y>*«-y
7 = 0 J '

The proof is by induction on /. For any g G H2(ß), we have

g- g(«)
<*,/o>- z — a

g~ g(")

z — a

so/o = (1, f0)KaJ3. For any g g #2(/3) we have

g - g(«)

(z-a),/0\+<g(a),/0>

,(T* - «)/0\ + <l,/0>g(a) = <l,/o>g(«),

<g,/> = z — a
(z-a),/   +(g(a),/>.

The first term is

so if

l^,(T*--a)f) = (*i^,f,
z — a

i-i

fi-i      ¿-i   :\ \1> /(í-i)-y/-^«,y
7 = 0

7¡

then it becomes

7=o-/- Jz — a

i-i

- E^<i,/(,-i,-,>g°+1)(«)
7 = 0

y!

= E7T<i./;-y>«U)(«)-rw¡/=i
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Since the second term is g(a)(l, /,) = (1/0!)(1, /-0>g<0)(«X we get

<g,/i>=  É ^<l,/-7>g0,(a),
7 = 0 *'

SO

/,=  t 7T<l./i-y>^.y.
7 = 0-''

Since it is possible to solve for each Ka , in terms of the/'s, the set { Ka0,.. .,Ka k}

is a basis for Y. Since M is the direct sum of spaces like Y, it follows that

M=((z-axt---{z-an)k»H2(ß)Y

for some av... ,a„in the open unit disk and kx,...,kn positive integers.   D

Using Theorem 2, Theorem 1 can be restated as follows.

Theorem 1'. Iff is analytic in a neighborhood of the unit disk and f is not a linear

combination of finitely many functions of the form Ka n, where \a\ < 1 and n is a

nonnegative integer, then f is cyclic for T*.
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