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REAL ISOMORPHIC COMPLEX BANACH SPACES
NEED NOT BE COMPLEX ISOMORPHIC

J. BOURGAIN

ABSTRACT. It is shown that complex Banach spaces may be isomorphic

as real spaces and not as complex spaces. If X is a complex Banach space,

denote X the Banach space with same elements and norm as X but scalar

multiplication defined by z ■ x = z ■ x for z G C, x € X. If X is a space of

complex sequences, X identifies with the space of coordinate-wise conjugate

sequences and its norm is given by ||x||-^ = ||x||xi where x = [z\,z2,...) for

x = («1,2:2,...). Obviously X and X are isometric as real spaces. In this

note, we prove that X and X may not be linearly isomorphic (in the complex

sense). The method consists in constructing certain finite dimensional spaces

by random techniques.

1. Introduction. In considering isomorphisms of complex Banach spaces, a

natural question is whether or not real isomorphic spaces are complex isomorphic.

A theorem due to S. Mazur and S. Ulam asserts that two complex Banach spaces

which are isometric as metric spaces are necessarily linearly isometric as real normed

spaces [8]. The purpose of this paper is to exhibit a complex space X with the

property that X and X, clearly real-isometric, may not be even complex isomorphic.

In this setting, the result also appears to be of interest to representation theory.

The method used to construct the space X is essentially based on finite dimensional

techniques. More precisely, X will be an Z2-direct sum X — 02 Xk, where the X are

suitably built finite dimensional spaces. Hence X is reflexive and from construction

it will follow that X has type p and cotype q whenever p < 2 < q (see [7] for

definitions and generalities). The first step to obtain the Xk will be to consider

certain random norms on CN. The present and earlier work (cf. [4, 9]) show that

this "random" technique is an easy and effective way to obtain finite dimensional

normed spaces with various pathologies.

It should be said that the isometric version of the problem, i.e. the existence

of real isometric noncomplex-isometric spaces, was solved previously by N. Kalton

[6]. Related results can be found in a recent preprint of S. Szarek [10]. He shows,

among other things, that in the finite dimensional setting one may have the extremal

situation d(Y, Y) = O(dimF), where d stands for Banach-Mazur distance.

The paper contains two further sections. In §2 it is explained how the infinite

dimensional problem reduces to a finite-dimensional one, namely, the construction

of the spaces Xk. Computations are carried out in §3. Since in many aspects our

approach is a repetition of a known reasoning, we may be quick on certain points

(it may be helpful for the reader to consult the Appendix of [9]).
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2. Reduction to a finite dimensional problem. For each n, we consider a

complex n-dimensional Banach space Y = Yn with norm satisfying

(1) \x\ < \\x\\Y < Vñ\x\       (ieC"),

where |x| = (^ jx.,]2)1/2 denotes the /2-norm on Cn.

This space Y will be obtained by a random method. More precisely, the extreme

points of the unit ball of Y will be K randomly choosen points on the sphere

Sn_1 = {x e C™, |x| = 1}. As usual in such construction, log/c ~ logn and (1)

may be assumed automatically satisfied.

The space Y has norm defined by ||x||y •= ||x||y, denoting x = Yll=i xjej, {e>}?=i

= unit vectors. Let {nk} be a rapidly increasing sequence of positive integers and

0 < 6k < 1 a sequence converging to 0. At this point, we do not explicite conditions

since they will be clear to the reader from what follows.

For each k, define the real interpolation space (cf. [2]) Xk = [lnk, Ynk]gk¿. (In-

stead of the real method, we may have used the complex interpolation method as

well.) Let X be the /2-direct sum X = 02 Xk for k = 1,2,.... Hence, we have the

identifications

X = Q)Xk    WithXk = [l2nk,Ynk}6k<2.
2

The next lemma is basically known (see [1, p. 77] for instance).

Lemma 1. Let
1     1-0    6        11,

nil p      q

Then |/2,Fn]e,2 has type p and cotype q.

PROOF. Since the dual space of [/2,yri]e,2 identifies with [¿2, Yn]ö,2, the cotype

property follows from the type property and the type-cotype duality for spaces with

type. Let us denote by {e¿} a finite Rademacher sequence. The map {x¿}"=1 —»

J2 BiXi has the obvious boundedness properties

l2(ln)^L2(l2n),        l1(Yn)^L2(Yn).

(These notations refer to the vector valued lp- and Lp-spaces.)

By the Lions-Peetre interpolation theorem (see [2, p. 121]), [l2(l2l),l1(Yn)}e^2

identifies with the Lorentz-space ¿P,2([Z2,Yn\et2). Since the identity map

P(\ll,Yn]ea)^F'2(\l2n,Yn]ea)

is norm decreasing, it follows that a is

F([l2n,Yn]e,2) ^ L2([l2n,Yn]e,2)

bounded. Hence the type p property of [Z2, Yn]e,2 is shown.

LEMMA 2. Given a positive integer d, there is 6 > 0 such that the Banach-

Mazur distance d(E,l2{) < 2 for any d-dimensional subspace E of [ln,YnJ0t2.

PROOF. The known estimate (see [3, p. 84])

d(E,l2) < Tp(E)Cq(E)d2^lp-l¡^

(Tp, Cq referring to type and cotype constants respectively) and Lemma 1 indeed

imply that d(E,l2d) < de.



REAL ISOMORPHIC COMPLEX BANACH SPACES 223

As a consequence of this lemma, we may state

COROLLARY 3. A sequence {93} may be found such that for each j, any 2n3-

dimensional subspace of Q)2Çj>2k>j Xk), similarly ®2C>2k>1 Xk), is 2-Hilbertian.

Moreover, 93 depends only on Jlj-i.    □

Remember that n3 = dimX,. The sequence {93} converges to 0 and is defined

such that subspaces of the "tale" 0fc> Xk of dimension J2k<J nk are Hilbértian.

This aspect of the construction is used in the following

LEMMA 4. Assume T is a linear isomorphism between the spaces X, X. Then

for each j, the inequality

d(X3 ® l2n,X3 ® l2n) < Cnj-xWn \\T-%        (m = n3)

has to hold.

PROOF. For fixed j, the space Z = span{T(Xk)uXk; k = 1,... ,j} is clearly of

the form Z — ®fc< Xk®X3®V, where V is a subspace of 0fc>J Xk, and dimV =

R< J2k<jnk- By construction, T~1(Z) = ®k<]Xk®Xj@W with W a subspace of

©fe>j Xk, dim W = R, From Corollary 3, we get for m! = Ylk<j nk + R < m+4n¿_i

(assuming ak rapidly increasing)

d(T-l(Z),Xj®l^)<Y,d{Xk,llk) + d(W,ll)
k<j

<E»*/2+2
k<3

and a similar estimate for d(Z,Xj ®l2n,). Consequently

d(X]®l2m,X3®l2n)<CnJ-i\\T\\\\T-'\\

as announced.

What has to be obtained is now clear. In order to contradict the conclusion of

Lemma 4, it will suffice to show that for a fixed 0 < 9 < 1 and for n chosen large

enough, the interpolation space |/J, yn]9,2 with Yn the random space described

above, cannot be obtained as a uniform quotient space of [I2, Vn]e,2® ln (uniformly

relative ton-» oo). This fact will be verified in the next section.

Actually, the argument applied to prove this yields also a minoration of the form

d(Yn,Yn) > en/logn. In [10], a more delicate argument leads to d(Yn,Yn) =

0(n), thus the order of the diameter of the n-Minkowski compactum (cf. [4]).

3. Estimations related to the spaces Yn. Let 0 < 9 < 1 be fixed as well as

n > n(6, M), where M is any number. Denote for convenience

B = [l2n,Y\e,2,        B = [l2n,Y]ea.

The space Y is determined by a random choice of K = nc points £i,..., £/f in

the unit sphere S = S"-1 of Cn, which will be the extreme points of the unit ball

of Y. Denote also S¡c, the X-fold product S x ■ ■ ■ x S equipped with its product

measure PgK. Fix a constant M. Our purpose is to verify that for n > n(9,M)

large enough, an estimation of the order e~^K for the probability (*)

Psk [IMIj,_»b < M, |M|p_B < M; ij £ {u(x) + v(y); \\x\\B < 1, \y\ < 1}, V,]
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relative to a choice (£1,..., £k) S Sk, is valid. Here u: C™ —» Cn and t>: C™ —♦ C

is any fixed pair of linear maps.

Taking K = n5, say, a standard argument (cf. [9]) involving nets of linear

operators u, v will then lead to the existence of a system £i,...,£k and thus

a space Y with following property: If ||2/||b_/b < M and |M|¡2_Vb — -^> then

u + v. B ® Z2 —> B is not a 1-quotient map in the sense that 3z G B, \\z\\-g < 1 and

z not of form z = u(x) + v(y), \\x\\b < 1, \y\ < 1. With respect to the previous

section, the role of M will be Cn3-i and n = n3. So it remains to evaluate (*).

Besides some complications due to the fact that B was defined as an interpolation

space, let us now indicate two features distinguishing these computations from

Gluskin's argument [4].

(1) The role of the conjugation when comparing B, B or Y, Y. this conjugation

will be exploited using the well-known fact that a + ß, a — ß are independent,

whenever a, ß are independent Gaussian processes.

(2) The lack of independence in evaluating certain probabilities will require some

elementary martingale theory.

We start to analyze (*). Notations c > 0, C < oo indicate numerical constants.

LEMMA5. Either there exists an orthogonal projection P in C" of rank [~] such

that 1^^11(2^,2 < 2M or (*) < e~cK.

PROOF. Notice that since the unit ball of B is contained in the Euclidean ball,

II«IIb_b > \\u\\b~,ii > ||w||y->i2 =   sup   |u(0)l-
l<7<fc

Considering the polar decomposition of u, it is easy to see that with probability at

least 1 — e~cK, the latter quantity will dominate 2M as soon as more than S s-

numbers of u are dominated by 6M. The existence of the required projection P is

then immediate.    D

Next, we claim v may be assumed to fulfill

(2) [   sup \(v(x),Pt:)\dt:<n
Js   \x\<l

-0/3

Indeed

LEMMA 6.   If (2) does not hold, then ||i>||j2_/g > M whenever (£i,...,$k)

Sk (taking n large enough).

PROOF. By construction, ||x||(S). < |x|1_ö||x||e-    and hence

/   sup \(v{x),PÇ)\dÇ<\\v\\2^g f     sup   \(x,PÖ\d£
JS   \x\<l JS    ||x||5<l

l^ll(B).^

< \\Vh^B

L
f     sup   \(Pl,lj)\edi

JS   1<3<K

< [(logjR:)/n]0/2||î;|

Remembering that K = nc', the lemma follows.    □

2^B-



REAL ISOMORPHIC COMPLEX BANACH SPACES 225

It follows from construction of P (see Lemma 5) that for |£| < 1

sup   \(ux,Pt)\ = \\u*Pl\\B. < \u*P^-e\\u*PäeY.
(3) "x|,B-1

<(2M)!-e   sup   |(|,P«fc>|».
1<3<K

Going back to (*), assume £j- = u(x) + v(y), where ||x||b < 1, \y\ < 1.

(4)

K&P&l < (2M)1'0 | \{^,Pu^)\6 + sup\(t:3,PuCk)\e \ + sup \{v(y),P&\.
{ kfr J      lvl<i

It will suffice to show that with probability at least 1 — e~K , some j = 1,... K

will violate (4).

From the fact that Js   ](£, P£)\d£ > ^ and inequality (2), it follows that with

probability > 1 — e~cK for at least K/2 values in the sequence (£i,..., £/f ) in S,

(5) \(ïj,Ptj)\>\

and

(6) sup \(v(y),PtJ)\ = o(l).
\y\<i

The first two terms in (4) remain to be analyzed. The term (£3,Pu£3) is the

crucial one. For (eS = iY^t=i ztet\^t £ C and X!lzt|2 = l}i with £ = x + iy

with x,y € R™, |x|2 + \y\2 = 1. Thus we identify S with the real sphere S2n_1.

Then,

(£, Pu£) = (x — ¿y, Pux + iPuy)

= (x, Pux) — (y, Pwy) — ¿(y, Pwx) — ¿(x, Puy),

\(l,Put:)\<\(x + y,Pu(x-y))\ + 2\(x,Puy)\ + 2\(y,Pux)\.

Since the map (x, y) —> ((x + y)/\/2, (x — y)/y/2) is a measure preserving transfor-

mation of S2n_1, it follows

/   \(t,PuO\d£<C f \(x,Puy)\d(x,y)<C/y/n.
Js yS2n-l

Hence, again with probability 1 — e~cK, most of the j-values will satisfy

(7) \(lj,Put:j)\<Cn-V\

The last contributions \(tj,Pu£k)\ f°r j ¥" k have to be evaluated. The indepen-

dence problem will be taken care of by relying on Azuma's distributional inequality

for martingales with square summable increments.

LEMMA 7.   Let {dk} be a martingale difference sequence on a probability space

(fi,P) and denote s = (£, Wd^)1/2. then

P[|pr>|>A] <e^'°\

The result is well known and easy to prove (see [5], for instance, for a proof).
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Define for each j the function a3 (resp. b3) of £1,..., £j_i (resp. £y+i,..., £k)

%j = /   sup|(£,Pu£fe)|<¿£;    bj
JS   k<j

sup \(£,Pu£k)\dt
S   k>j

satisfying a3, b3 < c((log K)/n)li2. Application of Lemma 7 with Ü = Sk and the

natural product-structure yields

Yl      { SUP K&> Pu&)\ - a3(   > A
l<j<K k<3

<e~cx2lK,        (A>0),

(8) Ps, £   supKc^PnCO^iin-1/3
i<y<K fc<J

< e
■Kn-2'3

and similarly, inverting the order,

(9) sav\(Zj,Putk)\>Kn-1'3
1<3<K

k>j
< e -Kn~

Combining (8) and (9) we see that with probability > 1 — e cK      (K was choosen

large enough), most of the j will verify

(10) supK^Pna^n-1/4.

It results from previous considerations (5), (6), (7) and (10), that with probability

> 1 - e~cK (4) will fail for some j — 1,...,K (n has to be taken sufficiently

large w.r.t. 9). Hence the proof is completed.
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